

Present Developments in Control Theory IFAC 50th Anniversary Celebration Heidelberg

Brian DO Anderson The Australian National University and National ICT Australia Limited

THANKS

to IFAC for inviting me.

It is an honour to be here today.

- To suggest directions for the future development of control theory
- To provide reasons for the suggestions drawing on:
 - Past history
 - Current drivers

- Drivers of Control Theory Development
- History
- Near term drivers
- Life Sciences
- Managing Complexity
- Conclusions

Plant (produces control theory) x(t)=summary of all past **Past control New control** practice, theory theory and practice theory

Control science supporting applications Control theorists often try to de-empiricize the 'art'

Past examples of science replacing art:

linear to describing functions to nonlinear theories.

SISO to graphical MIMO to LQG

Control art supporting applications (science lacking)

Drivers of Control Theory Development

History

- Ancient History
- Classical Control
- Modern Control
- Near term drivers
- Life Sciences
- Managing complexity
- Conclusions

Ancient History--I

- Some of the earliest control included:
 - Time keeping with water clocks
 - Clocks with a conical pendulum
 - Windmills:
 - facing sails into the wind,
 - controlling the sail speed with a governor,
 - adjusting the crushing parameters (gap and supply rate).
 - No theory backing. Control was empirical.

Ancient History--II

- The industrial revolution brought steam and the problem of speed control
- Main tool: centrifugal governor
- Practical problems :
 - Control the speed to a set point
 - Avoiding overshoot (or worse, instability)
 - Stability problems given integral action

The notion of design trade-offs in control design had started to present itself. There was no theory.

- Application (centrifugal governor) motivated:
 - Differential equation modelling
 - Formulation of a stability problem (roots of a polynomial had to lie in the left half plane)
- Solution was achieved for low order polynomials.
- Regulation accuracy versus overshoot trade-off became understood
- Many modest inventions tweaked the ideas.

$$\frac{d^3x}{dt^3} + 3\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 3x = r$$

Maxwell recognized, but could not solve, the general stability problem.

Maxwell recognized, but could not solve, the general stability problem.

while

In France, Hermite formulated and solved the general stability problem, without recognising the application significance.

and

Vyshnegradskii analysed a third order system (centrifugal governor), neglecting friction, and linearizing. He used a *graphical* presentation.

Ancient History V

- Astronomer Royal Airy, used control to cause a telescope to rotate uniformly; he described
 - instability,
 - analysis via a linearized differential equation
 - adjustment of dynamics for stability (1840)
- Routh solved the general stability problem (UK)
- Round 1895, Stodola at ETH had to control some water turbines at Davos.
 - He enlisted the help of Hurwitz, a professor of mathematics to give him a stability criterion
- In 1892, Lyapunov's thesis on stability appeared,

"Herr Stodola benutzt mein Resultat...deren Ergebnisse bei der Turbinenanlage des Badeortes Davos mit glänzendem Erfolge Anwendung gefunden haben"

- 'Classical Control' covers approximately 1900-1955
- Applications drivers included
 - Electronics and telecommunications networks
 - Defence
 - General increasing industrialisation
- Most problems involved linear, single-input, single-output, time-invariant, finitedimensional systems

Major Milestones

- Formal recognition of feedback concept
- Incorporation of transfer functions and Fourier transforms
- Establishing stability by a totally different method than manipulating coefficients in a linear differential equation: the Nyquist criterion:
 - It used measurements and not a model.
 - This was a huge piece of lateral thinking

Regeneration Theory

By H. NYQUIST

Regeneration or feed-back is of considerable importance in many applications of vacuum tubes. The most obvious example is that of vacuum tube oscillators, where the feed-back is carried beyond the singing point. Another application is the 21-circuit test of balance, in which the current due to the unbalance between two impedances is fed back, the gain being increased until singing occurs. Still other applications are cases where portions of the output current of amplifiers are fed back to the input either unintentionally or by design. For the purpose of investigating the stability of such devices they may be looked on as amplifiers whose output is connected to the input through a transducer. This paper deals with the theory of stability of such systems.

Design ideas like position feedback, rate feedback, PID control, elimination of offset by integral control became embedded.

• Graphical design tools with low computational complexity ruled

Feedback SWOT Analysis

Strengths	Weaknesses
Ameliorates plant parameter	High gain may:
variations	produce instability
Ameliorates output disturbances	amplify sensor noise
Promotes reference input tracking	saturate input
Opportunities	Threats
Integral feedback may eliminate	Unstable poles
steady state error	Nonminimum phase zeros
Trade-off of rise-time, overshoot	Unmodelled high frequency
and steady state error	dynamics
	Closed-loop > open-loop bandwidth

IFAC Heidelberg 150906

- Other western countries had national application drivers, such as cars, paper, steel, ships, minerals, etc.
- Control researchers still focussed on individual subsystems however.

Modern Control II

- The real subsystems were often one or more of:
 - Multivariable
 - High dimension
 - Nonlinear
 - Time-Varying
 - Poorly modelled
- Thus they were often outside the bounds of existing classical theory, and/or existing computational tools

Modern Control III

- The digital computer arrived--first as a design tool, and later as a control system component
 - Progressively removed many limitations on design methods
 - Reduced restriction on graphical schemes, low order designs, small numbers of parameters, etc
 - Motivated sampled-data control and lately, hybrid systems

- State-variable descriptions of systems
- Linear systems and deempiricizing classical control
- Linear Quadratic Gaussian Design
- Optimisation and Optimal Control
- Dealing systematically with noise
- Sampled-Data control

- Identification
- Distributed systems
- H_{∞} and robust control
- Theories of nonlinear systems, e.g.
 - Linearizations
 - Lie algebras etc
 - Backstepping
 - Lyapunov-based design

$$\begin{split} \dot{t}_{h,\varepsilon}(x,y) &= \varepsilon \mathbf{E}_{x,y} \int_{0}^{t_{\varepsilon}} L_{x,y_{\varepsilon}(\varepsilon u)} \varphi(x) \, du \\ &= h \int L_{x,z} \varphi(x) \rho_{x}(dz) \\ &+ h \bigg[\frac{1}{t_{\varepsilon}} \bigg(\mathbf{E}_{y} \int_{0}^{t_{\varepsilon}} L_{x,y^{z}(s)} \varphi(x) \, ds - t_{\varepsilon} \int L_{x,z} \varphi(x) \rho_{x}(dz) \bigg) \\ &+ \frac{1}{t_{\varepsilon}} \bigg(\mathbf{E}_{y} \int_{0}^{t_{\varepsilon}} L_{x,y^{z}(s)} \varphi(x) \, ds - \mathbf{E}_{x,y} \int_{0}^{t_{\varepsilon}} L_{x,y_{\varepsilon}(\varepsilon s)} \varphi(x) \, ds \bigg) \bigg] \\ &= h \widehat{L}_{x} \varphi(x) + h \theta_{\varepsilon}(x,y) \end{split}$$

IFAC Heidelberg 150906

- stems and smpiricizing classical control Linear Quadres Hingly Gaussian biddingly Optim, FOT ON ON Casioneau Mathematical mathematical

 - Sampled-

- _ntrol
 - mear systems

 - design

- State-variable descriptions of systems
- is and Distriction is and Distriction is and Distriction is and Distriction ideas than if ideas that fat but foot ar Quadres note ideas but foot siar fat note control, one toos siar fat note control, one toos classical on the algebras classical on the algebras note algebras Linear systems and deempiricizing classical control
- Linear Quadrat Gaussian
- **Optim**
- Sampled-

- design

Modern Control IV

ear systems and mpiricizing of **NTRONALDS** stayled and rol **CONNALDS** stayled and **But NEOROUMARES** stayled and **But NEOROUMA** State-variable descriptions of systems Linear systems and deempiricizing ch control Linear Gau. **Optim** Sampleddesign

- Frustration at the 'theory-practice' gap. Had applications ceased to drive theory?
 - In part inevitable in any engineering discipline grounded in science
 - In part consequence of signals sent by funding entities, and public sector institution reward practices, with US a pattern-setter
 - In part reinforced by cultural differences
 - In part reinforced by uncautious claims of control theory people.

Theorem: Under conditions X, Y and Z the system is stable and errors go to zero as time goes to infinity.

- Plant output should follow unit step input.
- 2 Plant output y_k well behaved till time 3400
- 3 Recovery occurs by time 3500

- A cable is towed behind a ship. The ship is not travelling in a straight line. The cable is modelled by a nonlinear partial differential equation.
- How do you determine the shape of the cable with the aid of a limited number of compasses and depth sensors on it? How many and where?

IFAC Heidelberg 150906

- The pitch control system on a commercial aircraft has two inputs, two outputs, stochastic disturbances, is open loop unstable and nonminimum phase. The state dimension is about 50
- How do you design a LOW ORDER controller

IFAC Heidelberg 150906

- Drivers of Control Theory Development
- History
- Near term drivers: public sector, private sector and science
- Life Sciences
- Managing Complexity
- Conclusions

- Government Level Drivers
- Company Level Drivers
- Scientific Drivers
- Researchers

- Government Level Drivers
 - Health and Ageing
 - Environment
 - Security, including (Asymmetric) Warfare
- Company Level Drivers
- Scientific Drivers
- Researchers

- Government Level Drivers
- Company Level Drivers
 - Integration of systems
 - Finding single solutions using multiple technologies (engineering, IT, biology, etc)
 - Using the freedom of wireless, lower power devices, embedded systems,....in most domains
- Scientific Drivers
- Researchers

- Government Level Drivers
- Company Level Drivers
- Scientific Drivers
 - Links with Life sciences
 - Managing complexity
 - Nanotechnology (but I am ignorant)
- Researchers

- Government Level Drivers
- Company Level Drivers
- Scientific Drivers
- Researchers
 - Intellectual interest
 - Some seek to couple applications to theory as a life-style

- Drivers of Control Theory Development
- History
- Near term drivers
- Life Sciences
 - The link to control
 - Systems biology
 - Mega challenges for control engineers
- Managing Complexity
- Conclusions

- The Government problem: increased life expectancy, and payment for health care
- The biotechnology revolution, which is forcing many biologists to:
 - Become mathematically more literate
 - To understand issues of feedback, modelling and system level behavior

Control, communications and computer devices in medicine:

- The technologies can be the basis of medical and veterinary interventions.
- Technologies used include safety critical systems, adaptive systems, sensors, low power, optimal control.

Cardiac Pacemaker:

Many pacemakers are adaptive.

Some contain a defibrillator.

Links with Life Sciences

- Control, communications and computer devices in medicine
- Biological structures and capabilities may inspire mimicry:
 - The body's control systems exhibit hierarchy, learning and adaptivity, nonlinearity, multiloop interaction.
 - Biological sensors and signal processing are different to what we are used to, and may be nonlinear--think how an insect lands on a flower.
 - What can we learn from nature's way of doing things?

- Control, communications and computer devices in medicine
- Biological structures and capabilities may inspire mimicry
- Medical interventions may first require identification of very complex systems:
 - The systems may not be linear
 - The signals may be pulses or chemicals, and not sine waves.
 They may be hard to define, isolate and measure
 - The systems are generally adaptive, and thus often not timeinvariant

IFAC Heidelberg 150906

Computed Tomography Colonography: automatic and robust statistical method that can accurately differentiate between polyps and normal tissue.

- Systems biology studies how an organism functions, viewed as an interacting network of genes, proteins and biochemical reactions, together with external environment.
- It aims at a system-level understanding, including:
 - the internal structure (genetic, biochemical and physical)
 - Dynamical behaviour (qualitative and quantitative), with predictive models and theoretical explanation of behaviour
 - How to control the system (biochemical, pulse signals etc)
 - Design aspects of the system
- Ultimate goal: improve human health and disease management

Specific Problem

• A car accident occurs.....

• The victim arrives. What measurements should one take? What control systems should be connected up to the interacting respiration, cardiovascular and nervous systems to stabilise and then promote recovery of the patient?

• Answers today are very empirical

- Types of models to identify are unclear; internal structures may have to be identified
- Inputs may be pulse sequences or chemicals, and hard to pin down
- Signalling pathways may have large delay
- Centralized and decentralized control actions may occur simultaneously
- Responses to inputs may be very hard to forecast

Mega-Challenges for control engineers

- Measurements are taken over very variable time scales: Xrays, pathology tests through to emergency room cardiac monitoring
- Many systems in body include an adaptive component --which must be allowed for in identification and control
- System inputs may include persistently exciting signals generated from another part of the whole organism
- Nature has NOT done analytic design; it has produced brilliant iterative design. How do we shift our thinking to do the same?

- Drivers of Control Theory Development
- History
- Near term drivers
- Life Sciences
- Managing Complexity
 - Isolating the issues
 - Specific examples: communications systems and power systems
 - The architecture problem, and examples
- Conclusions

• Domain of discourse:

- No one person can grasp it all
- Information from many sensors, sources, possibly heterogeneous, and/or masses of data
- Large size
- Systems of systems
- Sometimes large legacy component

Internet

- At the highest level, the complexity is overwhelming designers and managers
- Examples: telecom network, power system, a national economy, the human body, natural language processing, automatic real-time language translation, chips with 10⁷ components, etc

www and a biological system

- Complexity management in this sense is not just
 - Developing algorithms that will handle bigger and bigger matrices, even if new numerical analysis tools are used
 - Creating design tools that can easily portray four, five,...
 dimensional surfaces
 - Replacing deterministic algorithms of very high computational complexity by probabilistic algorithms that work well most of the time and have low computational complexity
 - Discretizing partial differential equations
- These are linear extrapolations of existing activity.

New issues can appear in managing complexity, including:

Securing scalability

Can an optimized adaptive traffic control system be expanded indefinitely as roads and cars as added?

Architectures

How are information flow and control actions to be handled in an emergency response system

Self-organization and repair

Can we build systems that do what the human body does?

New issues can appear in managing complexity, including:

- New phenomena (emergent properties, small-world, notion of scale-free)
- The applications themselves (mobile telephony, mobile communications, biological terrorism defence in cities, etc)--because they are so big.
- Are standards good or not good?
 - Nature thrives on diversity, the military probably abhors it.

Communication System Complexity

- Scalability World wide interconnection required, with many legacy systems
- Adaptivity: Desire self-configuring, self-healing, self-protecting, selfoptimizing, self-optimizing
- Decentralized Architecture There is a need for *Distributed* computing, *Distributed* control, *Distributed* optimization
- Application Specific Design There is a need for new paradigms like:
 - **Opportunistic and collaborative** communications, giving resources to the best channel (noise, bandwidth, power, etc)
 - New OSI-type layer modelling, to handle architectures

Communication System Complexity

- Information Theory: Do we know enough distributed system theory, or enough Shannon theory for multiusers?
- Robustness: What are the principles of designing systems that allow A to make local modifications while not knowing what B is doing, and what C did many years ago, in relation to performance, stability, software engineering, security, economic return to owners, reliability, etc

Power System Complexity

- Very long range interconnections required, with many legacy systems, and different operators
- Stability problem exists! It is made worse by:
 - -Frequent lack of central coordinating entity
 - Unpredictability of fault type and timing
 - Economic incentives on operators to minimise stability margins
- Dynamic modelling would require nonlinear equations with hundreds or thousands of variables
- Big dollars!

New York State Grid

 Very long range interconnections required, with many legacy systems, and different operators

- Stability problem exists! It is made worse by:
 - Frequent lack of central coordinating entity
 - Unpredictability of fault type and timing
 - Economic incentives on operators to minimise stability margins
- Dynamic modelling would require nonlinear equations with hundreds or thousands of variables
- Can it happen again?

• Big dollars!

Swarm Problems

- Rendezvous
- Consensus and flocking
- Station keeping
- Maintaining shape of a moving formation
- Splitting and merging formations
- Giving autonomy to a collection of agents to execute different classes of missions
- Self-repair

Architectures and Complexity

 Understanding these swarms requires answers to a fundamental problem:

What are the ARCHITECTURES for each of: SENSING, COMMUNICATIONS, CONTROL?

This question underpins MANY COMPLEX SYSTEMS. We are not used to asking it.

- Large scale systems have been discussed for several decades
- Discussions usually focus on
 - Hierarchical control, or
 - Decentralized control
- This is nothing more than imposing certain control, sensing and communications architectures....and look how difficult the problems have been!

An applications problem needing theory

- How should a corporation, or the Australian Army be organised?
 - How many levels should there be?
 - How big can each level be?
- This is obviously a problem involving data collection (sensing), communications and control with decentralization, adaptivity, robustness requirements
- Our existing theory is not suited.

How do we know we have
 it right at the moment? We
 have no way of knowing, apart
 from empirical observation!

An applications problem needing theory

BAE SYSTEMS

Michael Leuter Group Legal Directo

Alastair mrie

Group HR Directo

- How should a corporation, or the Australian Army be organised?
 - How many levels should there be?
 - How big can each level be?
- This is obviously problem involving collection (sensin communications ar decentralization, robustness requirements
 - What is the right architecture for sensing, communications and control?
- Our existing theory is not suited.
- How do we know we have
 it right at the moment? We
 have no way of knowing, apart
 from empirical observation!

- A national economy is part of the world economy, which has many agents
- Central banks probably have little idea as to how much data needs to be collected to 'control' a national economy
- Humans are in the economic loop, complicating control
- Elements of game theory are relevant; information is viewed as crucial by individual players
- Billions of dollars/euros are at stake.
 Livelihoods of families are at stake.

- A national economy is part of the world
- Central banks probably have do a better job how much data need wernments do a better job 'control' a national governments?
 Human and solution and so
 - 'control' a national governme? Huma tral banks and governme? Huma transformation and g

- formation is viewed as crucial by individual players
- Billions of dollars/euros are at stake. Livelihoods of families are at stake.

- A national economy is part of the world
- Central banks probably have and for control banks probably have and for control a national the gold standard for control a nation what the gold standard mether for the gold standard for the gold standard for the gold standard for the gold standard for control a nation what the gold standard for control a nation what the gold standard for the of an economy is? So how do we know whether • Human we know what the goue know we • Human we know what the goue know we have • How can we know so how do we have and • How can we know so how do we have • How can we know so how do we have • How can we know so how do we have • How can we know so how do we have • How can we know so how do we have • How can we know so how do we have • How can we know so how do we have • How can we know so how do we have • How can we know so how do we have • How can we know so how do we have • How can we know so how do we have • How can we know so how do we have • How can we know so how do we have • How can we know so how do we have • How can we know so how do we have • How can we know so how do we have • How can we know so how do we have • How can we know so how do we have • How can we have so how do we have so
 - Butions of dollars/euros are at stake. Livelihoods of families are at stake.

- Could central banks and governments do a better job of controlling national economies?
- How can we know what the gold standard for control of an economy is? So how do we know whether central banks and governments are or are not performing well?
- Where is the theory that says the more you plan and the more you measure, the more you might trip up-like the Soviet Union?

- Drivers of Control Theory Development
- History
- Near term drivers
- Life Sciences
- Managing Complexity
- Conclusions

Control theorist New control theory: activity and including marriage of intellectual drivers control, information and communications theory Plant and probably theoretical computer science, much (produces control theory) directed at solving the x(t)=summary of all past architecture problem **Past control** practice, theory theory and practice AND **Identification and** Life sciences link modelling where little is **Complex systems** known about structures, with architectural signals, and in presence demands, and of self-adaptive application specific processes demands