

IFAC PROFESSIONAL BRIEF
Hands-on PID autotuning:
a guide to better utilisation

A. Leva leva@elet.polimi.it

Dipartimento di Elettronica e Informazione
Politecnico di Milano, Italy
C. Cox chris.cox@sunderland.ac.uk
Control Systems Centre, School of Computing Eng. and Technology
University of Sunderland, UK
A. Ruano aruano@ualg.pt
Centre for Intelligent Systems, aculty of Science & Technology F
University of Algarve, Portugal

Abstract
PID regulators are the backbone of most industrial control systems. The problem of deter-
mining their parameters, then, is of great importance in the professional control domain. To
simplify this task and reduce the time required for it, many PID regulators nowadays incor-
porate autotuning capabilities, i.e. they are equipped with a mechanism capable of comput-
ing the ‘correct’ parameters automatically when the regulator is connected to the field. Due
to the importance of the problem, a very wide variety of PID autotuners have been developed
and are currently available on the market.
This monograph is aimed at control professionals who want to approach the problem of
choosing and applying a PID autotuner in a knowledgeable and effective way. This goal is
pursued by inducing an understanding of the theory of autotuner operation rather than by
presenting an exhaustive menu of techniques and commercial products. As a consequence,
this volume does not lead to a mere selection guide but to a set of concepts that, once mas-
tered, allows the reader to evaluate the effectiveness of a specific industrial autotuner for a
particular application. A significant space is also devoted to the review of PID control prin-
ciples, essentially for less experienced readers. Some industrial products are presented, to il-
lustrate how the concept introduced for classifying and selecting autotuners reflect in the real
world, and samples of current research are given based on the authors’ experience.

 1

mailto:leva@elet.polimi.it
mailto:chris.cox@sunderland.ac.uk
mailto:aruano@ualg.pt

Foreword
This monograph is principally aimed at professional engineers who want to know how to
choose and apply, much more effectively, one of the many PID autotuners currently avail-
able. In addition, it should also be of interest to anyone who would like to improve their
knowledge of PID control and autotuners. The focus of the information is on how the various
autotuners work. The primary aim is to provide the right kind of detail users require in order
to select the methodology most appropriate for their current application. Let us begin by
sketching out the monograph’s organisation, in order to help the reader understand the ra-
tionale behind this particular Professional Brief.

Section 1 features some basic concepts including the necessary definitions to establish the
terminology employed. Section 2 reviews the basics of PID control and pays particular atten-
tion to design issues and the formulation of a general transfer function that encapsulates
many of the industrial PID controller structures often quoted in the technical literature. It is
clear that this is an important prerequisite. However, because of space limitations this section
is necessarily brief. If the reader feels completely unfamiliar with the content of section 2,
then, it is recommended that the references, identified in the monograph, be consulted before
addressing the core of the subject.
Once a firm grasp of PID control basics is achieved, Section 3 can be digested. This section
explains how PID controllers can be tuned ‘on site’. This introduces the importance of ex-
perimentation, especially when this leads to the derivation of a description of the process be-
haviour from measured I/O data. The rationale of Section 3 is to clarify that once a ‘process
description’ has been obtained there are many methods available for determining the PID
controller parameters. Another important feature is that at the end of this section the reader
has all of the information required to tune the PID controller ‘by hand’. This kind of knowl-
edge should be invaluable later when assessing the various autotuner functionalities. In
summary, at this stage the reader will have encountered several tuning methods, presented so
as to be implemented by a human (not yet automatically). The main goal of this section is to
understand the range and variety of the various tuning methods that are available to the prac-
titioner.
Section 4 addresses the problems that arise when the tuning is automated and briefly de-
scribes some of the solutions that are commonly exploited in industrial applications. The im-
portance of obtaining steady state information is emphasised, together with the need for sig-
nal conditioning to improve the accuracy of the process description. The expectation is that
the understanding gained from this section should lead to a more informed choice if the
reader has to select a particular system.
The focus of Section 5 is a (short) presentation of a sample of industrial autotuners. This re-
view is not meant to be exhaustive (reference to product documentation is given when re-
quired), but rather to illustrate how the autotuner features previously considered and the pro-
posed classification, reflect in the real world. If the goal of the monograph has been attained,
the reader should now be capable of reading a product description and understand the advan-
tages and disadvantages of that configuration when it is to be applied in a particular situa-
tion.

 2

Sections 6 and 7 are devoted to brief descriptions of some ‘research’ autotuners, chosen to
illustrate the authors’ experience. Section 6 refers to research on ‘classical’ autotuning, while
section 7 deals with the very promising alternative provided by the use of soft computing.
The purpose of Section 8 is to provide a summary of the steps, covered in the earlier sec-
tions, that leads to a ‘route map’ that should be followed for the purpose of autotuner selec-
tion. In Section 9 some brief concluding remarks are reported.

1. Introduction

The basic concepts of (PID) autotuning
Many definitions of autotuning have been suggested. For the purpose of this volume, we pre-
fer to define the object devoted to the autotuning operation rather than the operation itself.
Thus, we say that

an autotuner is something capable of computing the parameters of a regulator con-
nected to a plant (i.e. of tuning that regulator) automatically and, possibly, without
any user interaction apart from initiating the operation.

The autotuner may reside within the regulator or anywhere in the overall control system. No
matter where it is, any regulator whose parameters can be computed automatically is said to
have autotuning capability. Note that, strictly, the autotuner is not part of the regulator: when
no autotuning is in progress, the computation of the control signal in no sense depends on the
autotuner’s presence. It is also sensible at this stage to distinguish between autotuning and
adaptation or adaptive control. In the latter case, the regulator parameters are computed
without operator intervention, while in the autotuning context the system may at best suggest
the operator to retune, not initiate a tuning operation. Complete treatment of adaptive sys-
tems can be found e.g. in (Isermann et al., 1992).

In selecting an autotuner, then, the user is encouraged to read the associated documentation
and establish when tuning occurs and how it is initiated. Under this point of view, we shall
distinguish four cases.

(1) Tuning is initiated by the user as a deliberate decision, either explicitly or by making
some manoeuvre which the documentation states to initiate a tuning (e.g. turning up
power or modifying the set point). If this is the case, it is important that the connection
between the manoeuvre and the tuning phase can be broken if desired, i.e. for example
that the ‘tune when set point is changed’ option can be disabled in the regulator con-
figuration and inhibited temporarily with some signal from outside the regulator, to pre-
vent e.g. that necessary plant manoeuvres cause two interacting loops to begin a tuning
operation together.

(2) Tuning is initiated by the user as a deliberate decision, but the regulator can suggest a
retune. If this is the case, it is important that the suggestion logic be documented and
configurable.

(3) Tuning occurs automatically when some condition occurs, e.g. the error becomes ‘too
big’ for ‘a certain time’. If this is the case, it is even more important that the logic be

 3

precisely documented and configurable. Moreover, it must be possible to disable this
functionality in the regulator configuration and to inhibit it temporarily from outside the
regulator.

(4) Tuning occurs continuously.

Cases (1) and (2) are to be classified as autotuning, case (4) is clearly continuous adaptation,
case (3) is somehow hybrid but, if the logic is properly configured, it is much more similar to
autotuning than to continuous adaptation. It is important, when selecting an autotuner, to un-
derstand in which category it falls so as to forecast how it will possibly interact with the rest
of the control system. It is also necessary to read the documentation carefully, since an ex-
pression like ‘expert tuning mode’, ‘supervised self adaptation’ or something similar, does
not provide any information on the actual mechanisms involved.

In this work we shall focus primarily on PID autotuning for single loop situations and say
almost nothing on continuous adaptation and more complex structures. This might appear a
limitation, so a justification is in order. First, the statistics reported in (Control Engineering,
May 1998) state that single loop controllers contribute 64% of all loop controllers, suggest-
ing that “many customers still want a controller to handle only one or two loops so as to pro-
vide a more manageable process in case of failure”. In addition, the two most desired fea-
tures of a loop controller are the PID algorithm and “startup self-tuning”, which in our ter-
minology means autotuning initiated at power up. As such, becoming familiar with autotun-
ing for single loop controllers means becoming proficient in a fundamentally relevant situa-
tion. Then, no matter how complex a plant is, control system optimisation is a skyscraper
whose foundations are the low level loops. As such, learning to (auto)tune the individual
loops means mastering the very basic fundamentals of the overall construction. Finally, dis-
cussing the issues we have chosen to omit would really lead far beyond the scope and extent
of this work, so we must acknowledge that we are covering a small section of the competen-
cies required for setting up control systems in the ‘general’ case.

An effective grasp of what we mean can be obtained e.g. from (EnTech, 1994), a short
document that the authors strongly recommend to anyone involved in industrial control, or
from (Bialkowski, 2000). However, accepting these limitations will allow for a self-
contained discussion; some problems will necessarily be left open, and it is the authors’ hope
that the reader will be encouraged and stimulated by them. Some suggestions for further
reading will be given, when useful, to guide those who desire a wider or deeper knowledge.

1.1. How autotuners work and how they can be broadly

classified
To start understanding how an autotuner works, consider how a human would act when tun-
ing a regulator in the field. Basically, he would (a) observe how the process behaves, maybe
stimulating it somehow, and – more or less consciously – turn this knowledge into a descrip-
tion of the process behaviour, (b) convert his ideas on how the closed loop should function,
taking into account the limitations of the process description determined in (a), into a de-

 4

scription of the desired closed loop behaviour, (c) decide what the regulator parameters must
be to achieve this desired behaviour. Formalising these steps will establish a procedure,
which from now on will be termed a tuning method. Hence, an autotuner is an implementa-
tion of a tuning method made so as to be capable of running automatically. Let us now take a
closer look at these steps.

1.1.1. The way process data is obtained and treated
Step (a) provides the process data. This can be done by stimulating the process deliberately
or just observing how it behaves during normal operation. In the former case we have an ex-
periment based autotuner, in the latter a non experiment based one. Experiment based auto-
tuners can stimulate the process in various ways: in open or closed loop, with different sig-
nals injected in different places, and so on. Some approaches try to reduce the process per-
turbation by taking as ‘experiments’ normal manoeuvres, e.g. set point changes. Whatever
method is adopted, it is necessary to ensure that process data are significant enough to allow
regulator tuning. This is a very complex and critical problem. Suffice now to say that, quite
intuitively, this problem is simpler in experiment based autotuners.

Once process data are available, they must be turned into a description of the process. To this
end, two main directions can be followed. The first is to employ the data for obtaining the
process model. An extremely wide variety of model types are used in autotuning, ranging
from state space models to transfer functions, convolution models, stochastic models, up to
neural networks and so on. To clarify the panorama, then, we can say that in the autotuning
context

a model is something that can be simulated and, in so doing, reproduces the process
data it has be drawn from with sufficient accuracy, so that it can be expected to cap-
ture the process behaviour precisely enough to allow forecasting that of the closed
loop once the regulator is tuned.

In this case, we have a model based autotuner. The other approach is to employ the process
data immediately for the subsequent tuning. In this case we have a non model based auto-
tuner. Also in the non model based case, a wide variety of process descriptions are used:
points of the Nyquist curve, points or characteristic values of some relevant responses in the
time domain (e.g. the static gain, overshoot and settling time of the step response) and so
forth. In our description, the relevant fact is that these various representations cannot be
simulated. Non model based autotuners can also be termed characteristics based autotuners.

1.1.2. The way specifications are accepted or produced
Step (b) corresponds to agreeing the control specifications. Clearly these can depend on what
has been observed in (a), in that a given requirement can be realistic or not depending on the
process physical characteristics and limits evidenced by its description. In particular, specifi-
cations must take into account what is the control effort required for their satisfaction. Speci-
fications may involve

 5

(i) requirements on the controlled variable’s behaviour, typically expressed in terms of set-
tling time, maximum overshoot, response time, rejection of disturbances, bandwidth
and so on;

(ii) requirements on the control variable’s behaviour, basically aimed at keeping the control
energy as low as possible;

(iii) requirements on the loop degree of stability and robustness, typically in terms of a re-
quired phase, gain and/or magnitude margin;

(iv) constraints on the controlled variable, e.g. alarm levels;

(v) constraints on the regulator dynamics given by measurement noise, which typically
calls for reducing the high frequency gain;

(vi) constraints on the control variable in terms of value and rate saturations.

It is worth pointing out that, for autotuner designers, control specifications are one of the
most difficult issues. In fact, rigorously speaking, specifications should take into account not
only the process information obtained in (a) but also the objectives of the tuning and the role
of the regulator in the overall control system, which cannot be determined from experiments.
This leads to some important considerations which are relevant not only for designing an
autotuner but also for selecting one. Consider the following short discussion on the matter.

The tuning objectives

The goal of any autotuner is to achieve the ‘best’ control. However, it is often unclear what
is meant by ‘best control’. Any control engineer knows that there are a number of trade-offs
when synthesising a regulator; for example, bandwidth and degree of stability are normally
opposite desires. Autotuners can accommodate such trade-offs, but there exist other choices
that must be made to orient the automatic tuning. Maybe the most important one is to decide
exactly what the best control is. Low overshoot? Fast settling? Quick set point tracking? Ef-
ficient disturbance rejection? In addition, these desires often conflict with one another, and a
good autotuner must be so flexible in accepting specifications to allow the skilled user to ob-
tain exactly what he wants, yet remaining simple enough to avoid confusing less knowledge-
able users and robust enough in the face of incorrect choices.

The role of the regulator in the overall control system

When tuning the regulator in a single, stand-alone loop, the main problem for the autotuner
designer is given by the extremely variable level of understanding the users may have. For
example, especially in very low-end products, so little user knowledge is commonly assumed
that specifications must be generated entirely by the autotuner itself: this is normally
achieved on the basis of the process descriptions, with methods too complex to be presented
here. As a consequence, autotuners can accept specifications at very different levels of com-
plexity: some do not require them at all, some provide the user with basic control, e.g. asking
whether a ‘fast’ or ‘low-overshoot’ tuning is preferred, some allow the user to input numeric
specifications, e.g. a desired settling time, directly. In synthesis, an important characteristic

 6

of an autotuner is the level of specifications control it allows the user to have. It must be
noted that the validity of user specifications must somehow be checked, thus that full control
is normally available only on products conceived for complex and/or large scale control sys-
tems, where the presence of skilled personnel can be assumed.

On the other hand, tuning a regulator which is part of a more complex control system also
requires tackling the problem of loop interactions. This has a number of consequences, start-
ing from the fact that one has to decide the order in which loops need tuning. For example, in
cascade control anybody would tune the inner loop first and then the outer with the inner
closed, such that the outer bandwidth is sufficient for the correct process operation but lower
than that required for the inner. However, such choices clearly require knowledge of the
overall control system structure. It is then apparent that autotuner designers have to face
some very tough problems in making their products usable. Quite naturally, the result is the
availability of products that are more or less open with respect to the user control allowed,
thus more or less powerful if well used and dangerous if not. When choosing an autotuner
for a given application, especially if several interacting loops are involved, it is important to
be able to select one that allows the right level of user control and to ensure that the human
skills required for using that autotuner correctly are available.

1.1.3. The way parameters are computed
Step (c) corresponds to invoking a procedure having the process and desired closed loop de-
scriptions as input and the regulator parameters as output. This procedure, then, implements
what is commonly referred to as the tuning rules.

Tuning rules can be constructed in several ways. One requires a process model and resorts to
choosing the regulator parameters so that the expected closed loop behaviour (that forecast
using the process model) either be as similar as possible to that of a reference model or enjoy
some time or frequency domain properties such as a prescribed settling time or a prescribed
position of its poles. In the former case we have a model based, model following autotuner
(the desired closed loop description being in fact a model), in the latter we have a model
based, non model following one, which – since it imposes some characteristics of the closed
loop and not a model for it - could also be called model based, characteristics following.
Another possibility, not requiring a model, is to choose the regulator parameters so that some
expected closed loop characteristics (computed using the process description, which is not a
model) reflect the user’s desires: an example of a ‘characteristic’ is the request that the open
loop Nyquist curve contain a prescribed point, which is typical of relay based autotuning. In
this case, we have a non model based, characteristics following autotuner. A third way to
construct tuning rules is trying to emulate human reasoning. This leads to the so-called rule
based tuning methods. In rule based tuning both the process behaviour and the desired closed
loop behaviour descriptions can be in the form of a model or not, since human reasoning can
be used (thus imitated) in any case.

 7

All these approaches involve, more or less explicitly, solving some system of equations. This
can be accomplished in many ways, from analytical methods to numeric approximations. In
particular, characteristic-based tuning can lead to a number of techniques for pursuing its
goals, including pattern recognition based methods and soft computing.

It is worth emphasising that the classification we are proposing is slightly different from that
commonly adopted in the literature, which distinguishes only ‘model based’ and ‘rule based’
(auto)tuning: the former is when a process model is involved explicitly, the latter when no
model is used explicitly and the tuning system tries to emulate human expertise (Åström and
Hägglund, 1995, p. 237, 241). In our opinion, this classification is well suited for classifying
autotuners under a methodological point of view but, especially if used by non specialists,
may introduce some confusing elements. Hence, we prefer a description that reflects the op-
erational aspects of autotuners more in detail and, though remaining simple and broad, al-
lows us to point out clearly those differences that may not be methodological but have a sig-
nificant relevance on what must be understood when using that autotuner. A final remark on
the classification we are proposing is that all the steps of the autotuning process are tightly
coupled: for model based autotuning a process model is in order, for time domain character-
istics to be imposed the required process information must be available, and so on. More-
over, a certain tuning policy is more suited for some purposes than for others, e.g. pole/zero
cancellation tends to produce sluggish transients for load disturbance rejection. It is then im-
portant, when choosing an autotuner, to understand at least the basics of the tuning rules it
contains.

1.2. Where and why PID autotuning is useful
Before saying anything in this respect, it must be made clear that a sufficiently skilled human
with sufficient process knowledge, data and time available can outperform any autotuner in
any situation. Autotuning can provide a tremendous improvement in setting up and maintain-
ing control systems provided that it is viewed as an aid to human skill, not a substitute for it.
This improvement can take place in several directions, and in the following we shall point
out the three major ones.

1.2.1. The importance of tuning PID loops correctly
Several studies report that the majority of regulators are mounted in the field and set into op-
eration using their default parameters. This often results in poor operation. According to
(EnTech, 1994), 80% of the control loops not only do not provide any benefit, but even in-
crease variability. Of these situations, 30% are due to incorrect regulator tuning. As a conse-
quence, many loops end up being left in manual mode. This implies at least two things. First,
the majority of applications do no appear to be critical at least as far as stability is concerned.
Second, which is far more relevant to us, the importance of having PID loops tuned correctly
is often underestimated.

In fact, few loops are independent. A poorly tuned loop means more hassle for the upper lev-
els of the control hierarchy, where (intuition should be enough for guessing this) interactions

 8

are even more evident. Thus, having a loop tuned incorrectly often results in the necessity of
taking more complex solutions at the higher hierarchy levels or of reducing the overall ex-
pectations.

This might seem obvious, but the authors have quite often came across situations where a
few badly tuned PID controllers turned a simple problem into a very difficult one. In fact,
when setting up the higher levels of the control system appears particularly difficult, almost
certainly a part of the responsibility falls on some underlying loops. The problem is that
these loops must be identified, and above all that the only way for avoiding problems is to
tune every loop ‘as well as possible’, which is actually very time consuming. Autotuners al-
low the user to spot these problems automatically, to tune a loop quickly, and even to per-
form cyclic loop retuning for progressively improving the system performance. They can be
used in the plant startup phase or during its operation, providing flexible tools for mainte-
nance.

Of course, especially in large-scale systems, it is important that autotuners be highly inte-
grated in the overall control and supervision system. The main goal of these remarks is then
to clarify that, especially in complex systems, loop autotuning must not be considered an an-
cillary functionality, both when choosing a control product and when using it; rather, it is an
important feature to observe when selecting a controller.

1.2.2. The importance of having standardised tuning policies
Repeatability is an issue in plant construction, commissioning and maintenance. It means
clarity, less errors, reduced costs. In one word, it is necessary because also undesired situa-
tions are in some sense repetitive. Briefly, and intuitively, these problems can be substan-
tially smoothed by the adoption of standardised procedures; in this respect, a systematic use
of autotuning can be very useful.

1.2.3. The process knowledge that can be gathered

from the use of autotuning
Finally, we would like to focus on an often neglected advantage provided not by autotuners
directly, rather by the adoption of a systematic control system design and maintenance policy
where they are used extensively and cleverly. Quoting from (Åström and Hägglund, 1995),
p. 232,

“[…] poor behaviour of a control loop can not always be corrected by tuning the
regulator. It is absolutely necessary to understand the reason for the poor behaviour.
[…] Remember–no amount of so-called ‘intelligence’ in equipment can replace real
process knowledge.”

This can lead to two interpretations. First, autotuning must be employed with the awareness
that invoking it unconditionally every time a loop behaviour is not satisfactory can actually
hide process malfunctions. For example, if an actuator is progressively reaching an unserv-
iceable condition, adapting the regulator over and over can keep the loop inside its operating

 9

limits up to the moment when the actuator definitely trips. This is, by the way, one of the
major reasons why continuous adaptation features must be used sparingly and wisely. On the
other hand, every autotuning operation gathers process information and is a snapshot of
process operating conditions. If process data are made available by autotuners to the plant
information system, it is possible – and not difficult – to compare them during the various
tuning operations.

Using autotuners systematically involves making many experiment on the plant. Besides tun-
ing the regulators, these can produce a wealth of process information, thus refining the proc-
ess knowledge by completing qualitative, human impressions with quantitative data. This re-
quires that the autotuners employed be open towards the exchange of information and com-
patible in this respect with the total system. This degree of compatibility is then another use-
ful parameter for selecting an autotuner.

2. The basics of PID control

Definitions, performance features and design fundamentals
2.1. Introduction
PID control research supports a massive literature. It would be impossible to do justice to all
the published results in a volume such as this. In addition, because of varying definitions, as-
sumptions and terminology it is sometimes difficult to make a direct comparison of two
seemingly similar algorithms. A common result is that the improved features highlighted in a
particular publication are not reproduced in the problem that one is examining. The aim of
this section is to establish our notation, to agree and identify the different PID controller
structure representations and to define and illustrate the key performance features that are
regularly employed when quantifying the response of the final closed loop control system.

2.2. Controller Modes
The PID control law computes the control signal as the sum of three contributions, which are
termed the Proportional (P), Integral (I) and Derivative (D) actions. Quite often the P, I and
D actions are also referred to as ‘control(ler) modes’.

+
+

ProcessPID

++

y° d

ym

u y

n
Figure 1: generic PID control scheme.

Throughout the volume we shall refer to the generic PID control scheme of Figure 1. Here y°
is the reference signal, u is the control signal and is assumed to be limited by two bounds umin
and umax, y is the controlled variable, ym is the measurement of it fed back to the PID regula-

 10

tor, d and n a are a disturbance and a measurement noise, respectively. Note that in a real
control system there are usually more than two sources of disturbances and noise. However,
for our purpose it is effective to classify all of them in the two categories suggested by figure
1. More precisely, then, we can state the following.

• There are disturbances that do not make ym differ from y. These include all the actions
on y (not ym) other than the control signal u, thus correspond to physical actions on the
system and not to phenomena that just affect measurements. For analysis and synthesis
purposes all these disturbances can be treated as output disturbances, i.e. as d in figure
1. For example, if the process is described by a transfer function P(s), a load disturbance
(i.e. an additive one on u) with Laplace transform Dload(s) (we denote the Laplace trans-
form of signals with the corresponding uppercase letter) is equivalent in figure 1 to an
output disturbance D(s) with Laplace transform P(s)Dload(s).

• There are disturbances that do make ym differ from y. We can group all of them under
the collective name of ‘measurement noise’ because noise is their most common source.
These disturbances do not correspond to physical actions on the system; conversely,
they account for the imperfections of measurement (whatever their reasons may be),
signal transmission and so forth. All these disturbances can be treated as n in figure 1.

Quite intuitively, counteracting phenomena that affect a physical quantity and phenomena
that only affect its measurement are different problems. That is why in the analysis and in the
synthesis of a control system d and n are treated differently, as will be shown later. It is
worth noting that in the literature there are several other ways to classify disturbances, and
that in some products’ documentation there appears to be some confusion on the matter. As
a consequence, the reader is encouraged to master this (or any equivalent) classification of
disturbances, because making wrong assumptions on how a disturbance must be counter-
acted may have a significant adverse affect on the controller (auto)tuning .

As for the error, some definitions are consequently in order to clarify notation. The control
objective is to lead y (not ym) to y°, so the ‘true’ error is defined as et(t)=y°(t)-y(t). However
the regulator can only act on the measurement ym of y, since n is by definition unknown (in
fact one could give, for example, a stochastic description of it, but this is beyond our scope).
Hence, we can define also an ‘apparent’ error ea(t)=y°(t)-ym(t). This is the ‘error’ the regula-
tor will try to make as small as possible, and is a good representation of et if n is small. It is
important to keep in mind the distinction between real and apparent error, because it has
some important consequences that will be discussed later. Curiously enough, however, also
this distinction is sometimes unclear, especially in the literature concerning less sophisticated
products.

To minimise possible confusion, we shall adopt the following notation. When referring to the
‘error seen by the regulator’, which will be our point of view when describing all control
laws and most tuning methods, we shall use the symbol ‘e’ and the reader must remember
that this is the apparent error. When the distinction is necessary, we shall adopt the symbols

 11

‘et’ and ‘ea’ explicitly and the reader must remember that expectations are on et whilst avail-
able measurements are described by ea .

A very common specialisation of the scheme in figure 1 is that shown as Figure 2. Here the
process is assumed to be described by a linear, time invariant dynamic system in the form of
the transfer function P(s) while R(s) is the transfer function of the (PID) regulator, which is
considered linear as well. Moreover, the regulator input is the (apparent) error. This means
that the regulator has ‘one degree of freedom’ (1-d.o.f.) in that the transfer functions from
Y°(s) to U(s) and from Ym(s) to U(s) differ only by sign, so it is not possible to specify how
the control will react to a set point change and to a measurement change (i.e. for example to
a disturbance) separately. Such regulators are frequently termed ‘error-input’ in the profes-
sional literature.

+-
R(s) P(s)

Y°(s)

Ym(s)

U(s) Y(s)

N(s)

D(s)

+
+

+
+

Figure 2: generic linear 1-d.o.f. (PID) feedback control scheme.

In the simplest PID regulator the control signal is then computed as

dt

)t(deKdt)t(eK)t(eK)t(u dip ++= ∫

or equivalently (and with a more common notation) as

 







++= ∫ dt

)t(deTdt)t(e
T
1)t(eK)t(u d

i

 (1)

which corresponds, when expressed in the form of the transfer function from e to u, to

 







++= d

1
PID sT

sT
11K)s(R (2)

and is frequently termed the ‘ideal PID’.

2.2.1. Proportional Mode
The mode that is almost universally present is the proportional or P mode. With reference to
(1), then, the control law in this case is given by

 bP u)t(Ke)t(u += (3)

 12

where uP(t) is the (proportional) controller output, i.e. the P action itself, K is the controller
gain and ub is a bias or reset value. The P action makes the control proportional to the error.
Hence it obeys to the intuitive principle that, the bigger e is, the bigger the control action
must be to lead y close to y°.

The P action depends only on the instantaneous value of the error and is nonzero only if e is
nonzero. In other words, the P action is ideally zero at steady state, but only provided that the
required steady state can be reached with zero control. If this is not the case it will be neces-
sary to ‘reset’ u, i.e. to add a constant term to it so that it maintains the required steady state;
if only the P action is used, this is the role of ub. However, the reset can also be accom-
plished by the I action, and that is why the in older regulators this action is also called
‘automatic reset’. Taking into account the control signal limitation it is possible to define the
proportional band of the controller, i.e. the range of error values where u can be made pro-
portional to e without exceeding the limits.

The proportional band Pb is then given by (umax-umin)/K. Note that if K » 1 the control output
is only linear for small errors. However, the proportional controller’s response is instantane-
ous and (normally) produces a quick response from the process. Unfortunately the P action is
very prompt in responding also to measurement noise. Hence it must be used wisely, since it
can contribute to excessive actuator upset. Finally, note that the P action gives its main con-
tribution at the beginning of transients; then, as y approaches y°, it tends to vanish (unless set
point weighting is used in it, see later on).

2.2.2. Integral Mode
Integral (or reset) action produces a controller output that is proportional to the accumulated
error. The control law in this case is given by

 ∫ +=)0(u)t(e
T
K)t(u

i
I (4)

where Ti is the integral or reset time constant and u(0) is the value of the controller output
when t=0. Note that uI also depends on the controller gain. Because uI is proportional to the
‘sum’ of the system errors, integral action is referred to as a ‘slow mode’. Åström and Häg-
glund (1995) point out that integral action can also be viewed as a device that automatically
resets the bias term ub of a proportional controller. This follows immediately by considering
that at steady state with y=y° the P action is zero except for ub. In other words, the I action
guarantees zero steady state error because, whenever e is the input of an integrator, there
cannot be any steady state if e is nonzero.

The I action does not vanish with e; on the contrary, if e remains constant, it varies linearly
obeying to the principle that, if y ‘does not start moving’ towards y°, the control action ex-
erted must become stronger and stronger. Thus, the I action does not consider only the pre-
sent e but also its past history, and that is another way of explaining how it provides the re-
set. Note that at any steady state with y=y° the control will be made only of I action (unless

 13

set point weighting is used, see later). The I action is slower in responding to e and cannot
have abrupt variations (being the state of an integrator). However it plays a crucial role in
governing the way steady states are reached.

2.2.3. Derivative Mode
The final mode is the derivative (or rate) action. Here the control is proportional to the rate
of change of the error signal. It follows that whenever the error signal is constant, the deriva-
tive signal contributes zero. The control law in this case is given by

dt

)t(deKT)t(u dD = (5)

Where Td is the derivative or rate time constant. Problems may arise when the error signal is
entrenched in (high-frequency) noise or when step changes in the set point occur, since in
these cases derivative action will generate large amplitude signals. However, most real sys-
tems have simple fixes to limit any ‘harmful’ effects a priori, such as imposing that the D
action cannot provide more than a specified percentage of the overall control u. Derivative
action is referred to as a ‘fast mode’ that generally improves the loop stability. It is often said
that the D action ‘anticipates the future’. This is another way of saying that it makes u de-
pend on the direction and speed of the variations of e. In fact, with reference to Figure 3, it
can be stated that the D action depends on the forecast variation of e ‘Td ahead’: Td then de-
termines how far in the future this forecast is projected, while K acts as a further proportional
factor between the forecast and the corresponding action.
The D action is the quickest to react (unfortunately, also to measurement noise) and helps
only if the forecast is good, i.e. if Td is not too big with respect to the time scale of the error
dynamics (compare cases A and B in figure 3). That is why Td must be limited and, because
Ti is a measure of the closed loop time scale, Td is normally requested to be ‘quite a bit
smaller’ than Ti.

t∆etrue = e(t+T d)-e(t)

Td

Td

e(t)

A

B

Figure 3: explanation of the role of the D action.

∆eforecast = Td
de(t)
dt

 14

2.3. Control performance assessment in the time domain
The most natural way of assessing the performance of a controller is to formulate prescrip-
tions on the transients it must produce. A variety of response characteristics can be used to
this end, such as the most common ones indicated in Figure 4. Or, the requirements could be
in the form that ‘the closed loop response to a set point step must be as similar as possible to
that of this model’. Thus, time domain assessment can be used both in model following and
in characteristics following autotuners.

Rise time:
time for going from 5% to 95% of
the final value minus the initial one

Settling time:
time for entering a
band of ±2% around
the final value without
leaving it anymore

Steady state errorOvershoot

Set
point

Controlled
variable

response

time

Figure 4: typical requirements for the closed loop step response in the time domain.

Quite intuitively, similar requirements could be made on the load disturbance response
and/or on the transients of the control variable. We omit details for brevity, but it is worth
noting that time domain assessment is very close to the way people not familiar with control
theory tend to evaluate the control performance. As such, it is a very natural way of compil-
ing a specification.

Time domain assessment, however, may not be easy to automate because it often implies
recognising local characteristics of a response that can be compromised by spurious meas-
urements. An alternative is to use integral indexes computed over time like the ISE (Integral
of the Squared Error); these are treated later on in this work. In addition, characteristics like
the degree of stability are easier to assess in the frequency domain.

2.4. Control performance assessment in the frequency

domain
Assessing the controller performance in the frequency domain is maybe less intuitive but in
general leads to more powerful analysis and synthesis tools, provided that the required proc-
ess information is available. Moreover, in this context also the degree of stability and the re-

 15

jection of noise and disturbances can be assessed within a unitary framework. The block dia-
gram considered is that shown as figure 2, i.e. the process and the regulator are assumed lin-
ear and described by the transfer functions P(s) and R(s), respectively.

The most used media for frequency domain assessment are the Nyquist and Bode diagrams.
Given a transfer function G(s), the associated Nyquist diagram is the plot, in the complex
plane, of the image through G of the positive imaginary semiaxis, i.e. the locus defined by
G(jω), 0<ω<∞. In closed loop control, it is particularly interesting to observe the Nyquist
plot of the open loop transfer function L(s)=R(s)P(s) - see figure 2 - because this allows two
very important definitions to be made. These are the phase margin, PM and the gain margin,
GM, illustrated in Figure 5.

R

I

L(jω)

-1
β

ϕ

Figure 5: gain and phase margins as seen on the Nyquist diagram.

The GM is defined in dB as –20log10(|β|), whilst the PM is ϕ and is normally expressed in
degrees. The system is marginally stable when both GM and PM are zero. For a system to be
stable both GM and PM have to be positive. The Bode diagrams are two graphs drawn to a
base of log10(ω). If the frequency response of L(s) can be written as

)(je)(j(L)j(L ωφω=ω

then the vertical axis on one graph (the ‘magnitude diagram’) is the log-modulus, LM. The
LM is expressed in dB and defined as

)j(Llog20LM 10 ω=

The vertical axis on the second graph (the ‘phase diagram’) is simply the phase, ϕ(ω) nor-
mally expressed in degrees. Examples of Bode diagrams are presented as Figure 6, which
also indicates how GM and PM appear. The frequency where |L(jω)|=1 is termed ‘cutoff fre-
quency’ and indicated in figure 6 with ωc. The frequency where arg(L(jω))=-180° is termed
‘ultimate frequency’ and indicated in figure 6 with ω180. Note that a low-pass behaviour has
been assumed for L(s), as suggested by physical considerations in any case of interest. Also,
it has been assumed that ωc is properly defined, i.e. that there is only one frequency where
|L(jω)|=1. We omit theoretical details for brevity, but a proper definition of how ωc can be
achieved by correct regulator design is a required feature for any control system.

 16

Log-modulus (dB)

Phase (deg)

0

-180

ωc ω180

ω180

ωc

|L(jω)|

arg(L(jω))

Figure 6: gain and phase margins as seen on the Bode diagrams.

GM

PM

1/T1

1/T2

The magnitude Bode diagram is widely used for regulator synthesis because many control
specifications can be easily expressed using it. In fact, with reference to the scheme of figure
2, the transfer function from Y°(s) to Y(s) is L(s)/(1+L(s)), that from D(s) to Y(s) is
1/(1+L(s)) and that from N(s) to Y(s) is -L(s)/(1+L(s)). Hence for ω«ωc (i.e. where |L(jω)|»1)
L(jω)/(1+L(jω))≈1 and 1/(1+L(jω))≈1/L(jω), while for ω»ωc (i.e. where |L(jω)|«1)
L(jω)/(1+L(jω))≈L(jω) and 1/(1+L(jω))≈1. This means that requirements in terms of re-
sponse speed, disturbance and noise rejection can be expressed in terms of |L(jω)| very natu-
rally, as depicted in figure 7, while stability requirements are easily checked on the Bode
phase diagram. In detail, if the closed loop dominant time constant must be between T1 and
T2, if a disturbance D(s) in the band (ω1,ω2) must be attenuated at least by the quantity AD (in
dB) and if a noise N(s) in the band (ω3,ω4) must be attenuated at least by the quantity AN (in
dB), the Bode magnitude diagram of L(jω) must fulfil the constraints of figure 7.

Log-modulus (dB)

0
ωc

ω1 ω2

AD ω3 ω4

AN

Figure 7: the Bode magnitude diagram as assessment tool.

Notice the different role of D(s) and N(s). Disturbances representing actions on the (physi-
cal) variable Y(s) can be counteracted by feedback if their frequency content does not extend

 17

above the cutoff frequency ωc and rejection is better if |L(jω)| is bigger in that band. Noises
only affecting the measurement Ym(s) can be counteracted if their frequency content is above
the cutoff frequency ωc and rejection is better if |L(jω)| is smaller in that band. A response
speed requirement means that |L(jω)| must intersect the 0 dB axis in a given interval. This
formalises and quantifies the intuitive idea that the control loop must exert strong feedback
up to the cutoff frequency in order to follow the set point and reject disturbances, then intro-
duce strong attenuation to prevent (high frequency) measurement noise from upsetting the
system.

It is clear that frequency domain assessment can be used in model following autotuners, the
desired closed loop description being in this case a desired L(jω); Figure 7 has also sketched
how it can be used in characteristics following autotuners, since the desired characteristics
can be turned into features of a desired L(jω). In any case, this approach requires a process
model unless the decision is taken to assess the desired characteristics of L(jω) on the basis
of some conveniently measured points of its Nyquist diagram (this is typical of relay based
tuning).

2.5. Modern design issues and the accommodation of

plant uncertainty
Up to now it has been assumed that the process under control is perfectly described by a lin-
ear, time invariant model.

In the real world, this is rarely (not to say never) the case. The process model will only ap-
proximately capture the real plant behaviour because of time–variances, nonlinearities, un-
modelled dynamics, sensor noise and unpredictable disturbances (Doyle et al, 1992; Rohrs et
al, 1993; Goodwin et al, 2001; Åström and Hägglund, 2000). For these reasons we must be
aware of how modelling errors will influence the process description and then, of course, the
performance of the closed-loop control system.

These ideas have led initially to a range of investigations captured under the global heading
of ‘sensitivity analysis’ but nowadays presented under the more general framework of uncer-
tainty and robustness (Sanchez–Pena and Sznaier, 1998). Central to the new formulations is
the concept of plant uncertainty described in terms of a nominal plant model plus a multipli-
cative or additive perturbation. This leads to definitions of robust stability and robust per-
formance. Robust stability infers the capability of maintaining stability in the face of plant
variations and modelling errors. Robust performance preserves a specified level of response
in spite of plant variations and modelling errors.

The following sections are based on extracts from the books and papers mentioned above.
The intention is to follow the framework introduced by Åström and Hägglund, 2000. The
purpose is to provide the reader with basic knowledge of modern controller design and as-
sessment methods, that can account for model errors and uncertainty in a more complete and
rigorous way than could be done with more classical indexes such as the cutoff frequency

 18

and the gain and phase margins. Control synthesis and assessment methods that account for
model errors explicitly are often collectively called ‘robust control’. This means that they
can ensure some properties (e.g. stability and performance) in a robust way, i.e. so that these
properties continue to hold in spite of model errors, process variations and/or uncertainty
provided these remain within quantified bounds.

2.5.1. The block diagram and some important transfer functions
The control systems we are dealing with are assumed to be characterised by the block dia-
gram of figure 8.

+- +

+
Rfb(s) P(s)Rff(s)

++

Y°(s)

Ym(s)

Et(s)

D(s)

N(s)

U(s)

+ -

Y(s)

+ -
Ea(s)

Figure 8: generic feedback control scheme highlighting the true and apparent errors.

In figure 8, the process is assumed SISO (Single Input, Single Output) and described as a
linear system with transfer function P(s). We assume that P(s) is not perfectly known and
that only an approximation of it is available. When relevant, we shall denote this approxima-
tion with Po(s) and with the term ‘nominal model’.

The controller is also linear but, notice, with two degrees of freedom (2-d.o.f.). In fact, the
transfer function Rfb(s) describes the feedback from the process output measurement Ym(s) to
the control signal U(s) while the series of Rff(s) and Rfb(s) represents the feedforward from
the set point Y°(s) to U(s). Hence, in the 2-d.o.f. case, these two signal paths can be made
different and the control reactions to the set point and to disturbances can be dealt with in a
(partially) separate way. A 1-d.o.f. formulation is obviously obtained by setting Rff(s)=1, see
figure 2. Clearly, in the 2-d.o.f. case the open loop transfer function is defined as
L(s)=Rfb(s)P(s) and in nominal conditions it is Lo(s)=Rfb(s)Po(s). The choice of Rfb(s) leads to
the structure embraced by many of the texts introducing analysis and design methodologies
at undergraduate level.

The relationships between the external input signals - Y°(s), the disturbance D(s) and the
measurement noise N(s) - and the control system outputs - the process output Y(s), its meas-
urement Ym(s) and the control signal U(s) - can be expressed in nominal conditions by

 19

 (6)
















°















−−

−
=

















)s(Y
)s(N
)s(D

)s(C)s(R)s(C)s(C
)s(T)s(R)s(S)s(S
)s(T)s(R)s(T)s(S

)s(U
)s(Y

)s(Y

offoo

offoo

offoo

m

The transfer functions So(s), Co(s) and To(s) are called the nominal sensitivity, the nominal
complementary sensitivity and the nominal control sensitivity, respectively, and are defined
as follows:

)s(P)s(R1

1)s(S
ofb

o +
= ,

)s(P)s(R1
)s(P)s(R)s(T

ofb

ofb
o +

= ,
)s(P)s(R1

)s(R
)s(C

ofb

fb
o +

= (7)

2.5.2. Stability definitions
The classical concept of stability of a linear time invariant system described as a transfer
function is well known. This will be defined here as input-output stability and demands that
the roots of the nominal characteristic equation 1+Rfb(s)Po(s)=0 all lie in the left half of the s-
plane.

The second concept is that of internal stability. The requirement for internal stability is that
the nine transfer functions in (6) are stable. This corresponds to requiring that the nominal
system is input-output stable and also that in it there is no pole/zero cancellation in the right
half plane.

2.5.3. Frequency domain design definitions for SISO systems

with plant uncertainty
The frequency domain design of robust feedback control systems involves fitting some con-
veniently chosen frequency responses to constraints derived from specifications and from
some quantification of uncertainty and model errors.

To this end, the functions So(s) and To(s) defined in (7) play an important role. Let us have a
look at them under this perspective, assuming that both P(s) and L(s) have a low-pass aspect
and considering for simplicity the 1-d.o.f. case, i.e. Rff(s)=1.

With these hypotheses, in nominal conditions the transfer function from Y°(s) to the true er-
ror Et(s) is So(s), that from D(s) to Et(s) is −So(s) and that from N(s) to Et(s) is To(s). More-
over, the transfer function from Y°(s) to Y(s) is To(s), that from D(s) to Y(s) is So(s) and that
from N(s) to Y(s) is -To (s), see (6) and figure 8.

Generalising the facts stated when talking about Bode diagrams (see figure 7), three fre-
quency ranges of importance emerge as shown in Figure 9.

 20

0

|So(jω)|

|To(jω)|

Range LF

Range MF

Range HF

dB

ω
Figure 9: important ranges in frequency domain design.

ω
c

|L (jω)|o

• At low frequencies (range LF) the disturbance D(s) will be attenuated, while the noise
N(s) will pass through on the controlled variable (thus on the error) with no attenuation.
Recall that in this frequency range |Lo(jω)|»1, hence So(jω)=1/(1+Lo(jω))≈1/Lo(jω) and
To(jω)=Lo(jω)/(1+Lo(jω))≈1.

• At high frequencies (range HF), conversely, the noise N(s) will be attenuated while the
disturbance D(s) will pass through. Recall that in this frequency range |Lo(jω)|«1, hence
So(jω)=1/(1+Lo(jω))≈1 and To(jω)=Lo(jω)/(1+Lo(jω))≈Lo(jω).

• In the boundary area between these frequency ranges, i.e. around the cutoff frequency
(range MF), there is usually some amplification of both noise and disturbance.

As for the set point, its frequency components below the cutoff frequency will pass through
on the controlled variable (making the error small in that band) while those at higher fre-
quencies will be attenuated (allowing a larger error in that band), see again figure 9. This is,
by the way, another explanation of the connection between cutoff frequency and response
speed. From these considerations, we will now show that performance and robustness speci-
fications can be given in terms of desired shapes of |So(jω)| and |To(jω)| in a very straight-
forward and expressive way.

Nominal performance

The first issue to deal with is nominal performance, which means requesting that in nominal
conditions (i.e. without model errors, disturbances and uncertainty) the error produced by
any set point signal belonging to a characterised set be ‘smaller’ than a prescribed amount.
One way of characterising such a set is to say that the set point signal has finite energy and
that its frequency distribution is quantified by a function W1(jω). More precisely, this means
that the set point signals of interest are all both Fourier- and Laplace-transformable, which
implies that the two transforms coincide on the imaginary positive semiaxis, and that denot-
ing these transforms by Y°(jω)

 21

 ω∀ω≤ω°)j(W)j(Y 1

holds. Requesting that, in nominal conditions, any frequency component of the set point
signals of interest produce an error frequency component with amplitude (in the
corresponding unit of measure) less than unity simply means imposing that

 ω∀
ω

≤ω
)j(W

1)j(S
1

o .

This condition can also be understood visually by looking at figure 9 and stating that ‘shap-
ing’ |So(jω)| in the frequency range where any set point signal of interest may have compo-
nents is a performance specification because the plot of |So(jω)| expresses how much the fre-
quency components of the set point are attenuated on the error. Of course requesting that the
error frequency components’ amplitude be less than the unity is purely conventional: for a
tighter constraint on the error it is enough to select a proportionally larger |W1(jω)|.

It follows, then, that the designer can specify performance by defining desired the shape of
|So(jω)|. Moreover, from the definition of So(jω), the previous inequality may be expressed as

 ω∀ω+<ω)j(L1)j(W o1 . (8)

In words, this inequality will be satisfied if a circle of radius |W1(jω)| centred on the point -1
of the s-plane does not include the point Lo(jω), for all ω. Equation 8 specifies necessary and
sufficient conditions for ‘nominal performance’, see Doyle et al (1992) for a more extensive
discussion.

Robust stability

A similar condition can be derived for robust stability. According again to Doyle et al
(1992), a controller provides robust stability if it provides internal stability for a family of
plants that embrace all of the conceived plant variations and modelling errors.

To define robust stability it is then necessary to introduce the idea of model uncertainty. This
is the ‘difference’ between the nominal model and the true system. Model uncertainty can be
described either as an additive or multiplicative perturbation. For the latter case the true (and
unknown) plant transfer function P(s) can be written as

 [])s(W)s(1)s(P)s(P 2o ∆+= (9)

where Po(s) is the nominal model, the weighting function W2(jω) provides a means of quanti-
fying the ‘frequency distribution’ of the model uncertainty (Sanchez-Pena and Sznaier,
1998) and |∆(jω)|<1. It is worth noting that for a rigorous treatment of this matter some fur-
ther technical hypotheses are necessary. For example, it is required that P(s) and Po(s) have
the same number of right half-plane poles for any W2(s) and admissible ∆(s) and that there
be no right half-plane cancellations between Rfb(s) and P(s) for any W2(s) and admissible
∆(s), see Doyle et al (1992) for a discussion that we omit for brevity.

 22

Here we prefer to express the model error as a multiplicative perturbation because it allows
one to write

 [])s(W1)s(L)s(L 2o ∆+=

where L0(s)=Rfb(s)P0(s), which simplifies computations. This information can be used to as-
sess closed-loop stability in the presence of plant uncertainty. Assuming the nominal loop,
i.e. the one described by Lo(s), to be internally stable, it turns out that the robust stability
condition is

 [] 1)j(,)j(L1)j(L)j(W)j(1)j(L oo2o <ω∆∀ω∀ω+<ω−ωω∆+ω

i.e.

 ω∀
ω

<ω
)j(W

1)j(T
2

o . (10)

Also in this case, a visual explanation can be given. By the Nyquist criterion, if the nominal
(closed) loop is stable and, for any W2(s) and admissible ∆(s), there are no right half-plane
cancellations and P(s) and Po(s) - thus L(s) and Lo(s) - have the same number of right half-
plane poles, the perturbed (closed) loop is stable too iff the Nyquist plots of Lo(jω) and of
L(jω) make the same number of turns around the point -1. If the perturbation is so big as to
destroy stability, then, there must be at least one frequency ω

_
 for which the corresponding

point L(jω
_

) of the perturbed open loop Nyquist diagram is far away from the nominal one
Lo(jω

_
) more than the distance from Lo(jω

_
) to the point -1. This means that, the larger

|W2(jω)| is in a certain band, the further Lo(jω) must stay from the point -1 to guarantee that
stability is preserved.

In force of (10), this condition can be expressed on Lo(jω) easily. In words, the inequality
(10) will be satisfied if a circle of radius |W2(jω)| centred on the point Lo(jω) of the s-plane
does not include the point -1, for all ω; see again Doyle et al (1992) for a complete discus-
sion.

Robust performance

The result of equations 8 and 10 can be combined to yield e.g.

 ω∀<ωω+ωω 1)j(T)j(W)j(S)j(W o2o1 .

If this is satisfied, it is guaranteed that the system achieves the required performance under
nominal conditions, expressed with W1(jω), and that stability is preserved for any model un-
certainty or perturbation not exceeding the limits expressed by W2(jω). It must be noted that
the problem of combining equations (8) and (10) is far more complex than the very simplis-
tic sketch presented herein, see Doyle et al (1992) once again. Nevertheless, this is the ‘prac-
tical’ condition usually specified for robust performance of SISO systems. This condition
can be expressed graphically requiring that the two discs in figure 10 do not intersect for all
ω.

 23

R
I

Lo(jω)

|W1(jω)|

|W2(jω)|

-1

Figure 10: assessing robust performance on the basis of So(jω) and To(jω).

2.6. Concluding remarks on stability, performance

and robustness assessment
It should now be apparent that the problem of assessing the stability, performance and ro-
bustness characteristics of a control system has been continually evolving since its first (in-
tuitive) setting in the time domain and also since the introduction of the stability and per-
formance indexes in the frequency domain (the phase margin and the cutoff frequency). The
previous sections have just given a quick overview of recently established results; a complete
treatment on the matter can be found with specific reference to the PID case in Åström and
Hägglund (1995) and, more in general, in Doyle et al. (1992) and Morari and Zafiriou
(1989). Under the restrictions of this volume, if the goal of the previous sections has been
attained the reader should now be able to master the following concepts.

• Assessment in the time domain typically refers either to local characteristics of a re-
sponse (e.g. the settling time or the overshoot of the closed loop step response) or to
some integral index computed over time (e.g. the ISE) for a certain response. It is very
intuitive for the non specialist user but sometimes tricky to automate. Autotuners using
this approach may require no model of the process but, in this case, cannot provide rig-
orous guidance for modifying the specifications if the required result cannot be ob-
tained. In addition, issues like the degree of stability or the attenuation of noise are not
easily cast into this framework.

• Assessment in the frequency domain with classical indexes (the phase margin and the
critical frequency) can only be understood by people with at least a minimum of theo-
retical control engineering knowledge. Autotuners using this approach can employ a
process model or not, and only in the latter case are they able to forecast the effect of a
modification in the requirements. In any case, all the results provided by such autotun-
ers are based on the assumption that the process model (if any) is exact, so the only way
to achieve some ‘robustness’ is to reduce the requirements on the cutoff frequency
and/or to increase those on the phase margin a priori.

 24

• Assessment methods accommodating model uncertainty are seldom used in autotuners
because they require both a process model and some measurement of its uncertainty.
Obtaining this information automatically is very difficult. However, if an autotuner re-
veals the model that has been employed for the tuning (some nowadays do), a knowl-
edgeable user can determine the nominal system’s characteristics and also quantify the
amount of disturbances and model errors that can be tolerated.

According to the authors’ experience, several people who tune regulators in the field appear
to consider their parameters just as ‘knobs to be moved’ depending on what characteristic of
the loop response needs improving. This may be enough in that context but does not suffice
for evaluating an autotuner effectively. For understanding how an autotuner will behave it is
necessary to abandon ideas like ‘the regulator gain must depend on the step response over-
shoot’, which are misleading because the entire regulator depends on the entire process dy-
namics, facts like the overshoot being just an external evidence of what these dynamics are.

From now on, to simplify the presentation, we shall employ the simplified scheme of figure
1 (instead of figure 8) and almost always refrain from analysing the effects of disturbance
and noise and the difference between the real and apparent error. Nevertheless, we strongly
encourage readers to become familiar with the subject of the preceding sections and to em-
ploy this knowledge for evaluating the results of tuning operations, or at least of critical
ones. In fact, if the results obtained with a given autotuner have not been satisfactory, it is
always a good idea to examine these results with the analysis methods presented.

2.7. Realistic PID Structures
Åström and Hägglund (1995) have covered PID control in great detail. They have explored
different algorithms besides the ideal control law (2), provided detailed solutions to the inte-
gral wind-up problem and looked in some depth at several important operational scenarios.
This brief section is simply intended to introduce three important themes that will be rele-
vant in different parts of this book. Here we shall briefly concentrate on antiwindup, con-
troller properness and set point weighting.

2.7.1. Antiwindup
It is perhaps unrealistic to assume that the system actuator will never ever hit an end-stop.
One possible effect of such a constraint on the PID controller is that the integrator may
‘wind-up’ and produce a very large signal usually leading to poor dynamic system perform-
ance. The remedy is that the I action must never be allowed to exceed the control saturation
limits. This is the basic principle of antiwindup, which can be implemented in several ways
(a complete discussion would not fit in this volume). It is, in any case, a nonlinear regulator
feature: that is why it is seldom considered in autotuning, being in general sufficient to rely
on the antiwindup mechanism of the underlying regulator however it is implemented.

 25

2.7.2. Controller properness
Another issue is that the D part of the PID controller in the ideal form (1) is not proper. To
overcome this, it is commonly implemented as

)s(E
N/sT1

sKT
)s(U

d

d
D +

=

This is often referred to as ‘using a real derivator’. In this way, N becomes another parameter
of the PID that has to be selected. It is worth noting that a high N makes the implementation
of the D action similar to a true derivative but it also increases the high frequency gain, thus
increasing noise sensitivity.

2.7.3. Set point weighting in the P and D modes
Set point weighting in the P mode means that the proportional action is computed as

 ())s(Y)s(bYK)s(U mP −°=

where b is a further parameter whose role is to limit the control step that may arise as a con-
sequence of an error step. An error step, in turn, is most likely to arise as a consequence of a
set point step, since the process response is rarely instantaneous. Some remarks are now in
order. First, b has practically no influence as steady state is approached, since at this point it
is the I action that dominates. Then, if b≠1 the P action is nonzero at steady state, since there
y=y°. Finally, since b can limit control bumps, it is particularly useful in the inner loops of
cascade controls, where the set point is not under direct operator control. Parameter b is sel-
dom considered in practice; several regulators do not encompass it, while others just permit
one to select for it a value of 0 or of 1. Some advanced tuning techniques make use of b.

Set point weighing in the D mode means that the derivative action is computed as

 ())s(Y)s(cY
N/sT1

sKT)s(U m
d

d
D −°

+
=

where c is a further parameter whose role is to limit the control spike that may arise as a con-
sequence of an error step, also with a proper controller. Here too, some remarks are useful.
Since in general y° is seldom modified, especially in process applications, setting c=0 does
not modify the controlled system dynamics significantly. In fact, c influences only the (few)
instants when y° varies, because when it is constant its derivative is zero and computing the
D action by deriving e or –y is the same. Clearly this does not hold e.g. for the inner loops of
cascade controls, or whenever y° may vary continuously. Some advanced tuning techniques
use c. Most often, however, it is set to zero leading to the so-called ‘output derivation PID’.

2.7.4. The ISA PID
A number of PID structures have been proposed in the literature. In this volume we have to
choose one for discussing general aspects, though we shall quote some of the others when

 26

dealing with autotuners that use them. As a general form for the realistic PID regulator we
choose the ISA one (Åström and Hägglund, 1995) due to its great generality. The general
form of this control law is

 () ()







−°

+
+−°+−°=)s(Y)s(cY

N/sT1
sT)s(Y)s(Y

sT
1)s(Y)s(bYK)s(U m

d

d
m

i
m (11)

The notation is as previously defined with the inclusion of the set-point weights b and c in
the proportional and derivative actions, already introduced. Similarly, the derivative part is
made proper by adding a pole with time constant proportional to Td via parameter N, as dis-
cussed above. Another way of seeing that these additional three parameters give added flexi-
bility to the controller implementation is to notice that they correspond to the 2-d.o.f. realisa-
tion shown as figure 11

+-
Rfb(s)Rff(s)

Y°(s)

Ym(s)

U(s)

Figure 11: a PID regulator with 2 degrees of freedom.

where

 







+

++=
N/sT1

sT
sT
11K)s(R

d

d

i
fb ,

)N/11(TTs)N/TT(s1
)N/bc(TTs)N/TbT(s1

)s(R
di

2
di

di
2

di
ff ++++

++++
=

(12)

Two facts are worth pointing out. First, Rfb(s) is a real (i.e. made proper with N) 1-d.o.f. PID.
Thus it can be tuned with virtually any method, including the (numerous) old ones that refer
to this structure. Second, once N is fixed by tuning Rfb(s), b and c can only modify the zeros
of Rff(s). Hence, once stability and disturbance rejection have been dealt with in the synthesis
of Rfb(s), b and c can be safely used for improving the set point tracking.

The ISA form is a good structure for considering N, b and c as true regulator parameters and
for taking profit from them in the synthesis phase. This is a quite modern issue, but some
autotuners do start ‘reasoning’ this way. At present, there is considerable research effort on
this and other associated matters.

As a final remark, note that the presence of the set point weights in the ISA PID can also be
interpreted as a very specialised form of feedforward compensation, because the scheme of
figure 11 can also be drawn as

 27

+-
Rfb(s)

Cff(s)

Y°(s)

Ym(s)

U(s)++

Figure 12: set point weighting viewed as feedforward compensation.

where

N/sT1

1b
1c

N
1sT1

)1b(K)1)s(R)(s(R)s(C
d

d

fbfbff +









−
−

++
−==−= . (13)

2.8. Two widely used extensions of the PID controller
As anticipated, many controllers are not applied to processes ‘alone’. On the contrary, these
controllers are assembled to form more complex structures like cascade control, feedfor-
ward/feedback schemes, and so forth. In this volume there is not the space for treating con-
trol structures, though this is a very important subject deeply connected with the recent re-
search on autotuning: for a detailed discussion, the interested reader can refer to (Åström and
Hägglund, 1995) and to the bibliography given therein.

Nevertheless, at least one control structure has become so popular (especially in process con-
trol, which is in some sense the preferred domain of autotuning) to be considered not really a
structure surrounding a regulator but an extension of the regulator itself. This is the Smith
predictor, used for controlling processes with significant delay and at present offered by sev-
eral industrial controllers and autotuners.

The Smith predictor is then presented in the following together with a somehow simplified
version of it called the ‘predictive PI’, which is also offered by several autototuners. The aim
of this section is not to provide complete theoretical coverage on these extensions, rather to
make the reader understand their rationale, possibilities and pitfalls, so as to be able of
evaluating the operation of an autotuner encompassing them.

2.8.1. The Smith Predictor
The Smith predictor has been first proposed in (Smith, 1957). Since then it has been exten-
sively applied to the control of processes with significant dead time, i.e. when in the process
response the delay dominates the rational dynamics. The Smith predictor is shown in the
scheme of Figure 13.

 28

U(s)

+
-

Y°(s)
D(s)

Ym(s)
R(s) +

+

+

N(s)

+
+

M(s)(1-e-sLm)

Pr(s)e-sL

+
F(s)

Figure 13: the basic scheme of the Smith predictor.

The rationale is as follows. Suppose the process is described by a rational model Pr(s) cas-
caded to a delay L. If an (almost) exact approximation M(s) of Pr(s) and an (almost) exact
estimate Lm of L are available, then in the scheme of figure 13 the transfer function from the
control signal u to the feedback signal f is very close (ideally, equal) to Pr(s). Moreover, in
the ideal case and without disturbances D(s) and N(s),

)s(Fe)s(F
)s(P

1e)s(P)s(F
)s(F
)s(U

)s(U
)s(Y)s(Y)s(Y sL

r

sL
rm

−− ==== .

Hence, by using this scheme, the (PID) regulator R(s) can be tuned taking into account only
the rational dynamics of the process, i.e. Pr(s). Without modelling errors, noise and distur-
bances - which implies that Ym(s)=Y(s) - the resulting behaviour of Y(s) will be that of F(s)
(which would be the controlled variable if there were no delay) just delayed by L. The name
‘predictor’ comes from the block M(s)(1-e-sLm), which actually generates the prediction F(s)
of Y(s) compensating for the delay.

Of course the Smith predictor cannot counteract disturbances D(s) and N(s) simply because
it cannot predict their effects, and it is not a robust scheme because all its rationale lies on the
availability of a quite accurate process model. Nevertheless it is widely used especially in
process control, so that several regulators and autotuners encompass it. In fact, as will be
clarified later, adopting the Smith predictor is a viable way to extend a (model based) auto-
tuner conceived for process with rational dynamics to cases where the delay is dominant.
With a very crude simplification, once the rational model and the delay estimate have been
obtained, it suffices to tune a PID on the former and then insert it in the scheme of figure 13,
M(s) being the model used for the tuning and Lm the delay estimate. The main pitfall of this
approach is that the model must be more accurate than normally required for model based
tuning of standard PID regulators.

2.8.2. The Predictive PI (pPI)
A specialised version of the Smith predictor is even more widely employed in process con-
trol applications. Recalling the definition of Rfb(s) in (12), the (1-d.o.f.) pPI regulator in its
simplest form is given by

 () ())s(Ue1
sT
1)s(Y)s(Y

sT
11K)s(U msL

i
m

i

−−−−°







+= , (14)

 29

where Lm is an estimate of the process delay. This is a specialisation of the scheme in figure
13 with R(s)=K(1+1/sTi), i.e. a PI, and M(s)=1/sTi. The pPI can also be interpreted as a stan-
dard PI - the first term in (14) - plus a correction based on the effects of the control action
that have not yet appeared on the controlled variable due to the process delay. The resulting
regulator block diagram is shown in Figure 14. Notice the similarity with the standard PI,
that corresponds to the same scheme replacing the term e-sLm with the unity.

U(s)
+

Y°(s)
K

e-sLm

1+sTi

++_

Ym(s)
Figure 14: the basic scheme of the predictive PI (pPI).

Many variations of the pPI have been proposed, see e.g. (Åström and Hägglund, 1995). For
our purposes it suffices to say that this scheme is a less powerful (but also less critical and
easier to tune with commonly available process data) declination of the Smith predictor idea,
often available in industrial regulators.

3. The basics of PID tuning

Obtaining simple process descriptions from data
and computing the PID parameters

To select an autotuner, it is of great help if one is capable of tuning. Hence, after the review
of PID control principles made in the previous section, here we shall illustrate the major PID
tuning methods. These can be used by a human (and it is recommended that anyone involved
in control have some experience of these) and, when automated, form the backbone of many
of the more common autotuners. The tuning process as sketched out in the introduction will
be the path followed in this section. We shall first describe how to obtain a description of the
process behaviour and then how to compute the PID parameters on the basis of it and of the
desired specification.

3.1. The extreme basics of data-based process description
The process descriptions used for autotuning must be obtained from I/O data. In the great
majority of cases, a process description is obtained by performing an experiment on the pro-
cess, i.e. by stimulating it deliberately. In other cases, it is obtained by merely observing the
process input and output during normal operation. This approach is far less frequent because
it requires one to make sure that the observed output behaviour is actually caused by the
input, which is not easy and may require measuring additional signals. If there is no certainty
in this respect, the identification mechanism may try to explain as an effect of the input some
fact that is actually caused by something else, and conclusions on the process dynamics
drawn in this way can be far from reality.

 30

The simple structure of the PID regulator (especially in the 1-d.o.f. case) calls for simple
process descriptions, so that first or second order models or small sets of characteristics are
typically used. In this section we present a very brief review of some modelling and identifi-
cation techniques used in autotuners, limiting the scope to experiment based methods since
they cover almost the totality of cases and treating the other methods would really not be
practicable. Since this presentation cannot be exhaustive for apparent reasons, we only intro-
duce methods adopting the most common approaches, i.e. involving an open loop experi-
ment, the recording of the so obtained response and the processing of this for obtaining the
process description.

In most cases, a step response will be used. Step experiments are the most common strategy
in experiment-based autotuners. For the reader willing to experiment, they are also easy to
apply in the field: it suffices to switch the regulator to manual, wait until a reasonably steady
state is reached, then change the control variable suddenly by an amount sufficient to make
the response obtained easily distinguishable from noise. In addition, step tests permit the
process to be maintained under reasonable control without perturbing it excessively or lead-
ing it to the stability boundary, as required e.g. by the closed loop Ziegler-Nichols method
(treated later on). Finally, a step experiment lasts as long as the process takes to settle, thus it
is one of the shortest ways of getting all the required information.

In some cases the step is applied in closed loop (to the set point or to the control signal), but
this requires that a regulator be already present. Hence this is only used for refining an exist-
ing tuning or in autotuners with a ‘pretune’ mode. Closed-loop step experiments clearly pro-
vide a description of the closed loop system. That of the process must be obtained from it,
which is a nontrivial task and is not treated in this work. For a more extensive discussion in-
cluding closed-loop identification, frequency domain methods and so on, the reader can refer
to Åström and Hägglund (1995) and to the references given therein, particularly in the bibli-
ography of chapter 2.

Step experiments are very common both in model based autotuners (because it is straight-
forward to identify a model on the basis of a step response record) and in characteristic based
ones, since several interesting features of the process dynamics emerge clearly from some
features of the step response such as the apparent delay, the settling time and so on.

Another widely used method for stimulating the process is the use of random-like signals,
e.g. a PRBS (Pseudo Random Binary Sequence). In practical applications this is common
only when a model has to be identified by parameter optimisation techniques (see later). Fi-
nally, several experiment based autotuners use the so called ‘relay identification’. As will be
explained later, almost any stable process subject to relay feedback enters a permanent oscil-
latory state, from which some characteristics in the time or (especially) in the frequency do-
main are straightforward to obtain. Relay feedback has the important feature that it does not
require one to open the loop, which makes it particularly useful in some applications.

 31

3.1.1. Model based process description
In the great majority of process loops, applying a step to the control variable causes the con-
trolled variable to reach a steady state and does not provoke an instantaneous variation of it.
This means that the process model seen by the regulator can be described by an asymptoti-
cally stable, strictly proper transfer function. In a few loops, a control step causes the con-
trolled variable to asymptotically assume a ramp-like behaviour: this case is commonly re-
ferred to as ‘runaway’, ‘integrating’ or ‘non self-regulating’ processes and can be described
by models with a pole at the origin of the s-plane. These facts are in good accordance with
experience, since any practitioner would classify the step responses he may encounter more
or less as depicted in Figure 15. Other cases (e.g. an oscillatory response with significant de-
lay) may exist, but they are unlikely to appear in practice. For simplicity, in this section we
do not consider noise and disturbances unless explicitly stated.

Figure 15: classification of step responses.

First-order models

Overdamped responses can be well represented with a first order model plus delay (or ‘dead
time’, leading to the acronym FOPDT), i.e. with a transfer function in the form

sT1

e)s(M
sL

+
µ=

−

 (15)

Many methods exist for identifying such models; an extensive review can be found in chap-
ter 2 of (Åström and Hägglund, 1995). Here we present one of the most widely used, namely
the method of areas. Given the step response record ys(t), one must first compute the gain µ
by dividing the response total swing by the input step amplitude As and the unit step re-
sponse yus(t) as ys(t)/As. Then, denoting by tend the final experiment time, i.e. assuming that
from tend on yus(t)=µ, it is necessary to compute in sequence the three quantities

 ()() ()dttyA,
A

t,dttyA
0end t

0
us1

0
0

t

0
us0 ∫∫ =

µ
=−µ=

 32

where the areas A0 and A1 motivate the method's name as depicted in figure 16a. Finally, the
other two parameters of the model are obtained as

µ
−

=
µ

= 101 eAAL,eAT

and setting L=0 should the computed value be negative (which can happen if the real delay is
small).

The method of areas is very powerful, remarkably noise-insensitive (since it uses integration)
and quite accurate. Moreover, it has the ability of estimating the delay without obliging the
user to define thresholds for deciding when the process response has started moving. This
ability suggests its use also for (moderately) oscillatory, undershooting or overshooting re-
sponses, provided that after computing µ the parts of yus(t) greater than it be ‘mirrored’ with
respect to µ and those below zero be truncated to zero. This is in some sense a trick based
more on empirism than on rigorous reasoning. It is shown synthetically in figure 16b, where
the process response is indicated by the dashed line and that used for computing A0 and A1
by the solid line.

A0

A1
time

µ

t0

(a)

 time

µ
(b)

Figure 16: the method of areas (a) and the response to be used (b).

Second-order models

Second order models can describe both overdamped and oscillatory responses. In the former
case a delay can also be included for better fitting, leading to a model in the form

 ()()21

sL

sT1sT1
e)s(M

++
µ=

−

 (16)

which, with the same rationale as above, is termed SOPDT.

For oscillatory responses, conversely, the advised model structure is

2
n

2

n

ss21
)s(M

ω
+

ω
ξ

+

µ
= (17)

It is apparent that an overdamped response can be described also by a FOPDT model. The
advantage of the SOPDT is a better phase accuracy, because in the FOPDT case any lag not

 33

explained by the first order rational dynamics causes the estimation of a larger delay (which
can deteriorate the subsequent tuning results).

SOPDT models of the type (16) can be identified from the step response in several ways.
The simplest one is to determine µ as in the FOPDT case, then L as the intercept on the time
axis of the tangent drawn from the unit step response in the maximum slope point. Finally,
the remaining parameters T1 and T2 are computed by fitting two points of the model unit step
response, whose expression (with T1>T2) is

 ,
TT

eTeT
1

21

T
Lt

1
T

Lt

2
12

















−
−

+µ

−
−

−
−

to the measured response (recall that at this stage µ and L are known). This must be done
numerically but is not a complex task. Traditionally, the two points used for the fitting are
the ones where the measured response reaches 33% and 67% of its final value.

For oscillatory responses that cannot be described well enough by FOPDT models, i.e. when
the oscillation is evident and cannot be confused with a moderate overshoot, models in the
form (17) are to be used. To identify them, it is necessary to measure the period To of the os-
cillation and the first two peaks a1 and a2 as indicated in figure 17 (µ is to be determined as
above). By the way, the presence of a visible second peak is a good clue for suggesting that
this is the right model to use.

time

µ

a1

a2

To

Figure 17: estimating second order oscillatory models.

Once these quantities are available, the remaining parameters of the model are computed as

()

2
o

n2

12

1T
2,

aalog
21

1
ξ−

π
=ω








 π
+

=ξ

Models for integrating processes

It is very uncommon that integrating processes also exhibit oscillatory behaviours. As such,
for describing them it is possible to use FOPDT or overdamped SOPDT models multiplied
by 1/s. Moreover, an integrating process produces responses that are similar to those shown
for asymptotically stable processes provided a pulse, not a step, is applied. More precisely, if

 34

a model M(s) has no poles (nor zeros) in s=0 and ys(t) is its response to a step of amplitude
A, then ys(t) is also the response of M(s)/s to an ideal pulse of area A. Hence, one can iden-
tify a model for an integrating process in two ways. One is to apply a step and wait that the
process output moves for say 5 times the (previously observed) noise band, then remove the
step (thus overall applying a non ideal pulse) and wait for settling. The response is then used
for identifying a FOPDT or SOPDT model as above, remembering to normalise dividing by
the area (not the amplitude) of the pulse. The required model is the identified one multiplied
by 1/s. The other way is to apply a step and wait for the process response to become a
straight line (unfortunately this typically means more perturbation). The response is then dif-
ferentiated numerically and treated as above for identifying a FOPDT or SOPDT model. The
required model is the identified one multiplied by 1/s.

More complex models

If the model must represent complex dynamics, it must be correspondingly complex. For ex-
ample, some of the responses shown at the beginning of this section apparently call for the
presence of zeros. In addition, it is not always a good practice to use a model with delay if it
is physically known that no delay exists, thus that the observed dead time is due to high-
order rational dynamics. Approximating such processes with delay models permits surely to
achieve the regulator tuning, but generally with worse performance than could be obtained.
Unfortunately, for more complex models less general and simple estimation methods exist. It
is then often necessary to employ numerical parameter optimisation, and even scratching the
surface of this subject would extend far beyond the scope of this volume. However, almost
any package for engineering mathematics nowadays offers such features included in a rea-
sonably friendly interface, so that identifying a model given its structure is an ability that can
be learned with moderate effort.

3.1.2. Characteristic based process description
Time domain characteristics

Time domain characteristics are, in synthesis, those sketched out in Figure 4: the gain or the
presence of an integrator, the settling and rise times, the overshoot and undershoot and so on,
naturally completed with the times at which any relevant response fact (e.g. the maximum)
occurs. Apparently all these characteristics are almost immediate to obtain from a step test.
For a human they are immediate de facto, while in an automatic tuning process the only
(though not simple) problem is to replicate human insight and to eliminate the effects of
noise, which can make the recognition of a characteristic more or less ‘blurred’.

Frequency domain characteristics

Frequency domain characteristics, conversely, are very straightforward to obtain by means of
a relay experiment. The rationale is that if a process with Nyquist curve P(jω) is subject (as
in figure 18a) to relay feedback with amplitude D (i.e. whose output is ±D) and hysteresis E
(i.e. whose switching points are at ±E), a permanent oscillation of the process output occurs.
This oscillation has the frequency ωox where P(jω) intersects the critical point locus of the

 35

relay, which is a straight line parallel to the real negative axis, located in the third quadrant
of the complex plane and depending on the hysteresis entity as shown in figure 18b. Noise
and disturbances are omitted here for simplicity.

u
+
-

y° y
P(s)

(a)

P(jω)

πE
4D

R
I

(b)

Figure 18: relay feedback (a) and oscillation characteristics (b).

This allows to identify one point of the process Nyquist curve, since P(jωox) is the point indi-
cated above with the circle: its magnitude is related to the amplitude A of the controlled
variable oscillation by |G(jωox)| = πA/4D and its phase can be easily deduced knowing that
its real part is –πE/4D. Notice that if a relay without hysteresis is employed this phase is –π.
An extension of the basic relay feedback idea is to insert a time delay between the relay and
the process (Leva, 1993). In this case the relay has no hysteresis or, realistically, has the
minimum for avoiding spurious switchings due to noise, its critical point locus being still ap-
proximated by the real negative axis. Here the point identified is the intersection of the Ny-
quist curve P~(jω) with the real negative axis. Due to the delay τ, however, a point of P~(jω)
corresponds to the point of P(jω) given by P~(jω)/e-jωτ. Thus, by modifying τ, several points of
P(jω) can be obtained. This use of relay feedback, then, provides a set of characteristics in
the frequency domain given by several points of the process Nyquist curve.

3.2. Most common approaches to PID synthesis
We now present some model based, some characteristics based and (more briefly) some rule
based methods for the synthesis of PI(D) regulators. This is not meant to be an exhaustive
list, rather a reasoned selection of well established and useful techniques. These methods,
and the autotuners that use them, may require the user to select some design parameters. An-
other aim of this section is then to explain at least the basic rationale of the methods, so as to
allow a conscious use of the autotuners based on them.

3.2.1. Model based synthesis
The key feature of model-based methods is precisely that the process description is a model,
which is available as a by-product of the synthesis. Thus, these methods rely on some identi-
fication technique that must provide a simple, fixed-structure model due to the necessity of
deriving simple tuning rules. Albeit approximate, however, this model has to represent the
process well enough to allow ‘sensible’ forecasting of the tuning results. When model-based
methods are used manually this is very useful for selecting the possible design parameters.
When they are used in an autotuner, it is important to check whether the identification results

 36

are made available to the user: if this is the case, they can be a valuable source of informa-
tion for process diagnosis.

The Haalman method

The Haalman method (Haalman, 1965) refers to the ideal, 1-d.o.f. PID, i.e. to the control law
(2). Its basic idea is to start from a FOPDT or SOPDT model and to select the controller pa-
rameters so that L(s)=2e-sL/3Ls, which corresponds to a cutoff frequency ωc of 2/3L and a
phase margin ϕm of 50° approximately. The objective is then to make the closed loop behave
like L(s)/(1+L(s)). Hence, this is a model following method.

Once L(s) has been assigned, the regulator parameters are computed by applying the rela-
tionship R(s)=L(s)/M(s) where M(s) is the process model transfer function, which means that
the model poles and zeros are cancelled. If a FOPDT process model is used it is advised to
select a PI tuned with the formulae

 TT,
L3

T2K i =
µ

=

while if the process model is SOPDT a PID is selected and the tuning formulae are

()

21

21
d21i

21

TT
TTT,TTT,

L3
TT2K

+
=+=

µ
+

=

The Haalman method is well suited for processes with overdamped response and significant
delay. In fact, being ωc inversely proportional to L, the requested response might become too
fast if L is small.

A modified version of the method has been proposed in (Scattolini and Schiavoni, 1995) so
as to ensure, for a FOPDT process model and with a PI regulator, a minimum phase margin
ϕm and a maximum cutoff frequency ωc, taking of course the most restrictive constraint. This
leads to

() TT,T,

L
2/TminK i

cm =







µ
ω

µ
ϕ−π

=

where ϕm and ωc become design parameters. A cue for selecting them is to fix ϕm to a rea-
sonable minimum (say 50°) by default, while ωc can be computed by imposing that the (ex-
pected) closed-loop settling time, which equals 5ωc, be ‘β times smaller’ than that of the
process model. In the FOPDT case, where the model settling time can be expressed as L+5T,
this means setting

T5L

5
c +

β
=ω

where β can range from 4 to 10. Note that it can be interpreted as an acceleration factor,
which makes its understanding quite easy also for non specialists. The modified Haalman

 37

method does not necessarily impose L(s), thus it is a characteristics following method where
the characteristics providing the desired closed loop behaviour are ϕm and ωc.

The Symmetric Optimum (SO) method

Despite being older than the Haalman method, the SO one (Kessler, 1958a-b) - which also
refers to the ideal, 1-d.o.f. PID (2) - contains several ideas that have been widely developed
in the following years. The most important one is to assume that the process model be

() ()∏∏ ==

−

++
µ= n

1h h
m

1k k

sL

sT1sT1
e)s(M

i.e. either FOPDT (m=1) or SOPDT (m=2) but with some other poles accounting for unmod-
elled dynamics. It is also assumed that the time constants Tk are dominant, i.e. that

 () ksT1T n

1h hk ∀+>> ∑ =
.

The quantity

 ()∑ =
++=

n

1h hum sT1LT

can then be interpreted as the time constant of a transfer function representing the unmod-
elled dynamics, which is a very clever (albeit rough) way to account for model mismatch.
The SO method takes as approximate model

() ()∏ =

−

++
µ= m

1k kum

sL

sT1sT1
e)s('M

and designs the regulator so that the cutoff frequency be 1/2Tum (thus reducing the demand
as the mismatch increases) and that the open loop magnitude |R(jω)M'(jω)| has a slope of -20
dB/dec in the frequency interval from 1/4mTum to 1/Tum. Hence, this is a characteristics fol-
lowing method. For a SOPDT model with T1»T2, the SO tuning formulae are

 K Ti Td
PI

um

1

T2
T

µ

4Tum

PID (T2≥4Tum)
2
um

21

T8
TT

µ

16Tum 4Tum

PID (T2≥8Tum) ()
2
um

um21

T8
T4TT

µ
+

T2+4Tum

um2

um2

T4T
TT4

+

The SO method performs very well provided that the process delay is small since the time
constants Tk must also dominate L, thus it is especially suited for electromechanical systems.
Moreover it is keen to generate low frequency regulator zeros, i.e. overshoots in the set point

 38

responses. This can be avoided by filtering the set point or, equivalently, by set point weight-
ing.

Many evolution of the SO method have been proposed (there is an extensive discussion e.g.
in Åström and Hägglund, 1995, pp. 166-172).

The Dahlin method or λ-tuning

Given a FOPDT process model, the Dahlin method (Dahlin, 1968) aims at making the trans-
fer function from the set point to the controlled variable resemble that of a first-order model
with unity gain, the same delay as the process model and a specified time constant, which
becomes a design parameter. Denoting this time constant with λ (which motivates the
method's name) this corresponds to tuning the regulator so that it can be approximated by

 ()sLes1
sT1)s(R −−λ+µ

+
=

If the term e-sL is replaced with its (1,0) Padé approximation, i.e. 1-sL, this approximation
turns out to be a PI. Conversely, if a (1,1) Padé approximation - i.e. (1-sL/2)/(1+sL/2) - is
used, a PID is obtained. In synthesis, then, the Dahlin tuning formulae are

 () TT,
L
TK i =

λ+µ
=

for the PI and

 () 2/LT
2/TLT,2/LTT,

L
2/LTK di +

=+=
λ+µ

+
=

for the PID. The method refers to the ideal, 1-d.o.f. PID (2) and is apparently model follow-
ing. It is a good technique but requires a reasonable choice of λ. However, experience would
soon convince any user that a bigger λ (i.e. less performance) is required when the process-
model mismatch is more significant. Therefore, for making these methods really useful,
some model error information should be gathered and used. This is dealt with at present by
several research paths.

As a final remark, note that λ-tuning has significant relationships with the pPI control law:
an interesting discussion on this matter can be found in Åström and Hägglund (1995), pp.
156-158.

The ‘kappa-tau’ (or ‘KT’) method

This method computes the parameters of the 2-d.o.f. ISA PID control law (11) apart from N
and in the output derivation case (i.e. c=0). It requires to identify a FOPDT model if the
process is not integrating, or a FOPDT one plus a factor 1/s if it is.

 39

The information used is then given by the model parameters µ, T and L, by the presence or
absence of the term 1/s (the parameters’ meaning is of course different) and by the request of
a PI or PID regulator. A further specification is the required magnitude margin Ms, defined
as

)j(L1

1maxMs ω+
=

ω

for which the two values of 1.4 (conservative tuning) or 2.0 (more aggressive tuning) are ad-
vised. Given all this, and defining the process normalised gain α and normalised delay τ as

TL

L,
T
L

+
=τµ=α

the PI(D) regulator parameters are computed as

() (

() (,eDb,eLCT

,eLBT,eAK
2

21
2

21

2
21

2
21

DD
0

CC
0d

BB
0i

AA0

τ+ττ+τ

τ+ττ+τ

==

=
α

=)

)

where the coefficients Ai, Bi, Ci and Di come from the following table, taken from (Åström
and Hägglund, 1995).

 Integr. No No No No Yes Yes
 Contr. PI PI PID PID PI PI
 Ms 1.4 2.0 1.4 2.0 1.4 2.0
 A0 0.29 0.78 3.8 8.4 0.41 0.81
 A1 -2.7 -4.1 -8.4 -9.6 -0.23 -1.1
 A2 3.7 5.7 7.3 9.8 0.019 0.76
 B0 8.9 8.9 5.2 3.2 5.7 3.4
 B1 -6.6 -6.6 -2.5 -1.5 1.7 0.28
 B2 3.0 3.0 -1.4 -0.93 -0.69 -0.0089
 C0 0.89 0.86
 C1 -0.37 -1.9
 C2 -4.1 -0.44
 D0 0.81 0.48 0.4 0.22 0.33 0.78
 D1 0.73 0.78 0.18 0.65 2.5 -1.9
 D2 1.9 -0.45 2.8 0.051 -1.9 1.2

These coefficients were derived by applying dominant pole design to many different proc-
esses and then interpolating the results to obtain compact tuning relationships. Thus, this is a
model following method with the peculiarity of using interpolation. One important remark is
that the normalised delay, sometimes called the ‘controllability index’, can be taken as a
measure of how difficult to control a process is.

 40

The KT method is a very good tool, simple to use and suitable for many different situations.
Also a frequency response version of this method exists.

The Internal Model Control (IMC) method

The IMC scheme, first proposed in (Morari and Zafiriou, 1989), has found a number of suc-
cessful applications. To briefly explain its rationale, consider the block diagram of Figure 19

U(s)
+
-

Y°(s)
D(s)

ym(s)

Ŷ

P(s)

M(s)

Q(s)F(s)
+

+

+
-

N(s)

+
+

Figure 19: IMC block diagram.

where P(s) is the transfer function of the process (which we assume to be asymptotically sta-
ble, thus excluding integrating processes), M(s) is the process model, Q(s) and F(s) are as-
ymptotically stable transfer functions, at this stage arbitrary; ym and ŷ are the true (measured)
and nominal controlled variables, i.e. the outputs of the process and of the model respec-
tively. Note that the feedback signal is the difference ym-ŷ, which motivates the method's
name in that the regulator (the grey blocks) contains a model of the process explicitly. Note
also that the IMC scheme closely resembles that of a Smith predictor. In fact, the IMC is a
generalisation of the Smith and of many other schemes, casting them all together in a unified
framework. The IMC scheme corresponds to a classical (1-d.o.f.) feedback one if the regula-
tor is

)s(M)s(Q)s(F1

)s(Q)s(F)s(R
−

=

and it can be proven that, under the hypothesis P(s)=M(s), it is internally asymptotically sta-
ble iff M(s), Q(s) and F(s) are asymptotically stable. Hence, the IMC provides a parameteri-
sation of all the regulators which stabilise a control system containing a (known) asymptoti-
cally stable process.

Coming to its practical use, the IMC synthesis method is a two-step procedure (all the details
omitted here can be found in Morari and Zafiriou, 1989). First Q(s) is determined to optimise
the system's response to the reference signal of interest, without any robustness considera-
tion, assuming P(s)=M(s) and with the sole constraint that Q(s) be asymptotically stable. The
best policy is to choose Q(s) as an approximated inverse of M(s), namely that of its mini-
mum-phase part. Then, to ensure robustness, the low-pass “IMC filter” F(s) is introduced.
The structure and the parameters of F(s) are chosen to achieve a reasonable balance between
robust stability and performance. For simplicity, F(s) is often chosen of the first order and (of
course) with unity gain, i.e.

 41

λ+

=
s1

1)s(F

Parameter λ can be interpreted as the closed-loop time constant of the control system if
P(s)=M(s) and if P(s) is minimum-phase. More in general, it can be thought as the dominant
closed-loop time constant. In any case λ is the design parameter of the method, which deter-
mines the control system bandwidth and degree of robustness. Being in the ideal case
T(s)=F(s)Q(s)M(s), the IMC is a model following method trying (roughly speaking) to can-
cel M(s) with Q(s) so as to impose the closed-loop dynamics F(s).

Applying the IMC approach to PID tuning is very straightforward. Here we present a modi-
fied version (Leva and Colombo, 2001b) of the original IMC-PID method reported in
(Morari and Zafiriou, 1989). This method computes the parameters of the 2-d.o.f. ISA PID
(11) apart from the weights b and c but including N, which can improve the sensitivity (see
Leva and Colombo, 2001b for a discussion). If the objective is disturbance and noise rejec-
tion, then, this method does all the job. If also set point tracking is an issue, several methods
exist for computing the weights (which do not interact with stability and disturbance rejec-
tion, as discussed). One such method is proposed in (Leva and Colombo, 1999), but also
computing them with the (simpler) KT formula has proven to be satisfactory in practice.

In synthesis, then, the method consists of identifying a FOPDT model and then applying the
IMC technique by choosing

λ+

=
µ

+
=

s1
1)s(F,sT1)s(Q

and by replacing the process delay by its (1,1) Padé approximation (1-sL/2)/(1+sL/2). The
regulator turns out to be a real PID given by

 () ()
()

()λ+
λ

=−
λ

λ+
=

λ+µ
=

λ+
+=

L2
LNT,1

T
LTN,

L
TK,

L2
LTT d

i

i
2

i (18)

The main concern in using the IMC-PID method is the choice of λ. This concern is shared by
the Dahlin method, which can be interpreted as an ancestor of the IMC procedure. As antici-
pated, λ is a knob for trading stability and robustness against performance. It has been
proven (Leva and Colombo, 2001b) that, given a process model and an estimate of the corre-
sponding model error, a lower bound for λ, i.e. an upper bound for the performance request,
can be found beyond which stability cannot be ensured anymore.

There exist also methods for estimating the model error from measured data (see e.g. Leva
and Colombo, 2000) but these would lead us beyond the scope of the volume, thus we just
quote the fact as a suggestion for interested readers. As a practical rule of thumb, anyway,
one can reason (both for the IMC-PID and for the Dahlin method) as described in the follow-
ing. A far more extensive discussion, involving cues for selecting the most appropriate con-
troller structure, is reported in (Åström et al., 1992).

 42

• Decide whether rational dynamics dominate the delay or vice versa. This can be made
e.g. by computing the normalised delay and assuming the delay as dominant if it is
greater than a given threshold (one is a good threshold, see Åström et al., 1992).

• If the delay is not dominant, say if τ≤0.25, set λ to a fraction of the model time constant
(e.g. 1/10 to 1/2 depending on the required acceleration).

• If the delay is moderately dominant, say if 0.25< τ≤0.75, set λ=1.5(L+T).

• If the delay is definitely dominant, consider delay compensation (e.g. with a Smith Pre-
dictor scheme or with a pPI) if possible, otherwise choose a greater λ than in the previ-
ous cases: 3(L+T) is a fairly good first guess.

It must be noticed that these are only rules of thumb. In every practical case, performance
can be improved by trying different values of λ in the field. For apparent stability reasons,
this should be made starting with a high (i.e. conservative) value and then reducing it.

Optimisation methods

There are a number of methods sharing the following, simple rationale. If the closed loop
behaviour must be made similar to that of a given model, tune the PID by minimising with
respect to its parameters a cost function J containing the difference between the response of
the loop (forecast with the process model) and that of the model to be followed. A frequently
used function is the ISE, i.e.

 ()∫ −=
endt

0

2
)followedbeto.(mod)forecast(dt)t(y)t(yJ

This reasoning can be extended to the characteristics following context provided that the cost
function does not involve any model to be followed: for example, it may simple contain the
error and be

 ()∫ −°=
endt

0

2
m dt)t(y)t(yJ

which can be viewed as a characteristic of the loop behaviour. It is important to note that
these methods require the user to specify what response must be considered. For example,
minimising an ISE for the set point response may lead to different results than minimising it
for the load disturbance response. Also, the ISE is not the only cost function employed.

Several examples of such methods can be found in (Åström et al., 1993; Åström and Häg-
glund, 1995) and in the references given therein.

3.2.2. Characteristics based synthesis
The key feature of non model based methods is that the process description is not a model,
rather some characteristic values of it in the time or frequency domain. In deriving some

 43

methods a model may be involved, but this is not meant to represent the process so as to al-
low forecasting the tuning results.

Here too, we present a brief and not exhaustive list of methods, to improve the knowledge of
them and of autotuners based on them. For apparent reasons, non model based synthesis
methods are intrinsically non model following.

The Ziegler-Nichols methods

The Ziegler-Nichols rules (Ziegler and Nichols, 1942) are the first (thus historical) example
of a method for automating the PID synthesis. Their rationale is to impose a decay ratio of
0.25 to the set point step response, assuming that the process can be (very roughly) described
by an integrator plus a time delay at least in the band of interest.

As such, this is a characteristics following method. Ziegler and Nichols proposed some for-
mulae for computing the PID parameters on the basis of characteristic values of either the
process open-loop step response or the sustained oscillation induced by a proportional regu-
lator of convenient gain.

The first method consists in determining the quantities a and b based on an open-loop step
response record as depicted in figure 20.

time

tangent in the point
of maximum slope

a

b

Figure 20: the Ziegler-Nichols method.

Then, the PI(D) parameters can be computed from the following table:

 K Ti Td
P 1/a
PI 0.9/a 3b
PID 1.2/a 2b b/2

The second method requires to apply proportional control and increase the controller gain
until the process output reaches a sustained oscillation. Denoting with Tu the period of the
oscillation and with Ku the regulator gain yielding it, the PI(D) parameter are computed as

 44

 K Ti Td
P 0.5Ku
PI 0.4Ku 0.8Tu
PID 0.6Ku 0.5Tu 0.125Tu

Relay-based methods

A number of methods exist for PID tuning that are termed this way because they use the
typical information provided by a relay experiment, i.e. one or more point of the process Ny-
quist curve. As such they are all characteristics based methods, and in the great majority of
cases they are also characteristics following. A somehow historical example can be found in
(Åström and Hägglund, 1984), another is (Leva, 1993). In fact, the most natural way of using
one point of the process Nyquist curve characterised by a frequency ω1, a magnitude P1 and a
phase ϕ1, is to impose that

)(jj
11

m1 eeP)j(R π−ϕϕ =ω

This complex equation yields two (real) regulator parameters and means that the open loop
Nyquist curve L(jω) will contain the point e-j(ϕm-π), i.e. that the loop will have cutoff fre-
quency ω1 and phase margin ϕm. For tuning an ideal PID in the 1-d.o.f. form a third equation
is required, which is typically obtained by imposing the Ti/Td ratio, i.e. setting Ti = αTd
where α becomes a design parameter useful for limiting the high frequency regulator gain.

The main concern in using relay based methods is that the cutoff frequency emerges as a re-
sult of the relay experiment, being the frequency at which the oscillation arises. As such, the
amount of relay hysteresis adopted becomes relevant in determining the loop cutoff fre-
quency, and the problem is that the relationship between these two quantities is far from triv-
ial. Inserting a delay in series with the relay can help in this respect, because modifying this
delay along the experiment can make the oscillation arise at a prescribed frequency. This
means that the design parameters are the cutoff frequency and the phase margin, which is a
widely accepted choice. The problem is that several delay modifications may be required,
resulting in a long tuning phase.

A very important advantage of relay based methods, however, is that the local characteristics
of the open loop Nyquist curve can be imposed exactly in that it is guaranteed that this curve
contain the point e-j(ϕm-π): the problem is what the overall behaviour of this curve will be, but
having a way for imposing at least its local behaviour around the cutoff with great precision
is a good feature.

3.2.3. Rule based synthesis
According to the proposed classification, in rule based synthesis there is actually no explicit
‘process description’, neither as a model nor as a set of characteristics. The goal behind this
class of methods is to mimic human intuitive reasoning rather than time or frequency domain
computations. Under this framework lie expert and fuzzy systems.

 45

These methods, which are not suitable for manual tuning, but can only be applied in an
automated manner will be described further on, in the section devoted to Soft-Computing
methods.

3.3. Choosing the controller structure
This section is aimed at giving some very basic guidelines for understanding when P, PI, PID
or more complex control strategies are recommended. Borrowing from section 3.9 of
(Åström and Hägglund, 1995), where a deeper analysis is reported, we can start with the fol-
lowing statements.

• PI control is sufficient when ‘tight control’ is not required (i.e. when the detailed aspect
of the controlled variable and control signal transients is not an issue) or when the proc-
ess dynamics exhibits an apparent first-order behaviour (single time constant and no
dead time). This is easy to guess from a step response and quite frequent in practice
(e.g. in level control of single tanks). Moreover, the I action can be excluded if zero
steady-state error is not required, which sometimes happens e.g. in internal loops of
cascade controls.

• PID control is sufficient when the process dynamics looks second-order and is signifi-
cantly delay-free. A typical case is temperature control, when one time constant comes
from the body whose temperature is controlled and the other from the sensor. The D ac-
tion is particularly beneficial if the two time constants differ significantly, as is common
in the case quoted. It must be kept in mind that a large D action also amplifies meas-
urement noise unless properly filtered. Thus, if the regulator at hand does not allow con-
trol on the derivative filter, it may be better to reduce bandwidth expectations and use a
PI.

• For processes where one of the two previous statements hold and if tight control is not
required, there is a very little benefit in using more complex controllers.

• PID control may be inadequate when tight enough control is required for processes with
long dead times, high-order dynamics or oscillatory modes. If this is the case it is often
necessary to resort to more complex and/or specialised controllers, which are not treated
in this volume.

An excellent and far more detailed discussion on the matter of this section can also be found
in Åström et al., 1992 and in the papers quoted therein, to which the interested and control-
theoretically curious reader is referred. The discussion starts by defining some dimensionless
quantities that can be used for indicating a preferred controller structure and also for predict-
ing the main characteristics of the closed-loop behaviour.

Though referring to regulators tuned with the closed-loop Ziegler/Nichols rules, this discus-
sion can be used for drawing first-cut conclusions on the preferred controller structure also in
the general case provided that the process dynamics can be described by low order models
precisely enough. It must be kept in mind that in any case these are just first-cut rules: it is in

 46

no sense guaranteed that the suggested controller structure is the ‘best’ one, but if an auto-
tuner allows to choose the structure, the one provided by these rules is a good first guess. In
the following we shall then resume the guidelines given in Åström et al., 1992, which at the
authors’ experience can be used effectively in all the cases of practical interest. The first
thing to note in this respect is that user-guided controller structure selection is seldom avail-
able in autotuners but can be very useful if properly employed. Furthermore, any recommen-
dation on the controller structure is deeply connected with some on the tuning policy. This
means, quite intuitively, that when a problem is so critical that the controller structure cannot
be chosen arbitrarily this also indicates that some ways of tuning that controller are not rec-
ommended. The quantities considered in Åström et al., 1992 refer to a FOPDT model in the
form (15) if the process is not integrating or to one in the form

)sT1(s

e)s(M
v

sL

v +
µ=

−

 (19)

if it is integrating, thus they are consistent with the (simple) model identification guidelines
we have given before. These quantities are the ‘normalised process gain for processes with-
out integration’ k1, the ‘normalised process gain for processes with integration’ k2, the ‘nor-
malised dead time for processes without integration’ θ1 and the ‘normalised dead time for
processes with integration’ θ2, defined with reference to (15) or (19) as

 ,
T
L,

T
L,

)j(M
k,

)j(M
k

v
21

uu

v
2

u
1 =θ=θ

ωω
µ

=
ω

µ
=

where ωu is the ‘ultimate frequency’, i.e. the smallest one such that the model phase is -π.
Note that names like these are used elsewhere with different meanings, so we have adopted
the quantity names and symbols used in Åström et al., 1992 to avoid confusion.

The directions for controller structure selection are given in the following table. The com-
plete interpretation of this table would be too lengthy to carry out here. For the purpose of
this work, it is better to draw from it some operational cues for the selection and use of an
autotuner. Hence, we can state the following.

• When the table dictates that the I action is optional, recall that it must be included if
zero steady-state error is required.

• If tight control is not required the only significant recommendation is to use set point
weighting with integrating processes that, if the integrator is removed, show a dynamics
dominated by the time constant Tv (case 5). Integrating processes whose dynamics (re-
moving the integrator) is dominated by the dead time can be managed with a P or PI
regulator (case 4).

If tight control is required, things are far more complex. Also in this case, however, some di-
rections can be given.

 47

• When feedforward compensation is required recall that set point weighting is a (very
specialised) form of it, see (13). Hence, in the single-loop PID framework treated in this
volume, choose a PID with this feature (e.g. an ISA one) and possibly an autotuner em-
ploying the weights. If the latter is not available tune for load disturbance rejection
(where feedforward has no influence) and then try to adapt the weights manually, recall-
ing again (13).

• When dead time compensation is required it would be advisable to use regulators with
this feature (e.g. comprising a Smith predictor or a pPI). There also exist autotuners for
these regulators, not treated in this volume for space limitations. If no predictor is avail-
able, choose a tuning policy aimed basically at high damping and then try some manual
adjustments, e.g. slightly increasing the gain or decreasing the integral time.

 Tight control required

Tight control
not required High measurement

noise
Low saturation

limit
Low meas. noise
and high sat. limit

1 θ1>1, k1<1.5 I I + FFCE + DTCR PI + FFCE + DTCR PI + FFCE + DTCE

2 0.6<θ1<1,
1.5<k1<2.25

I or PI I + FFCR PI + FFCR PI + FFCR + DTCR or
PID + FFCR + DTCR

3 0.15<θ1<0.6,
2.25<k1<15

PI PI PI or PID PID

4 θ1<0.15, k1>15
or θ2>0.3, k2<2

P or PI PI PI or PID PI or PID

5 θ2<0.3, k2>2 PD + SPWE PPTR PD + SPWE PD + SPWE

FFCR Feed Forward Compensation Recommended
FFCE Feed Forward Compensation Essential

DTCR Dead Time Compensation Recommended
DTCE Dead Time Compensation Essential
SPWE Set Point Weighting Essential
PPTR Pole Placement Tuning Required

4. The typical autotuning process
Automating the steps of tuning methods
In this section we shall describe the most important aspects of the autotuning process. That
is, after the reader has been provided with the background of how a PID can be tuned on the
basis of process information gathered from the field, it will be explained how this operation
can be automated, what are the major problems that arise in doing this and what are the solu-
tions taken for these problems in industrial autotuners. Understanding this material will then
become another source of information for selecting an autotuner and for using it in the most
effective way.

 48

4.1. Obtaining the process behaviour description
automatically

4.1.1. The needs: steady-state and control-relevant dynamics
determination

First, it may be necessary to determine the static process behaviour. Limiting the scope to
situations that may arise in practice, in a model based context this means sensing whether the
process is integrating or not and in the latter case estimating its gain. In a characteristics
based context this may mean several things: the gain or the steady state output value are
normally considered as characteristics too, and in most cases some lexical variable is used
for stating that the process is integrating. So, as long as static behaviour is considered, the
model and the characteristics based contexts are quite similar.

However, the matter is less trivial than it may appear for at least two reasons. Under the
point of view of the autotuner designer, obtaining static information is not an easy task espe-
cially in noisy cases and when nonlinearities are involved. Under the point of view of the
user, static information is always useful but its actual importance depends on the characteris-
tics of the specific control problem.

This fact, which is the more relevant in this context, will be now illustrated with an example.
Consider the two processes

() s

5.0)s(P,
s1

1)s(P 221 =
+

=

Notice that at ω=1 both have magnitude 0.5 and phase –90°: thus, we can say that these two
processes, though they are completely different as for the static behaviour because one is in-
tegrating and one not, in the frequency domain ‘have the same local behaviour’ around ω=1.

Suppose the regulator must be tuned to achieve ωc=1 and ϕm=60°. This can be done with a
PI by imposing that

 °−= 120je)1j(P)1j(R

which, by the way, is the most common practice in relay tuning. In both cases, since
P1(j1)=P2(j1), the result will be .3TK i == Figure 21 depicts the resulting open loop Ny-
quist plots, the magnitude plot of the transfer function from the load disturbance to the con-
trolled variable (the process output) and the closed loop responses of the controlled variable
to a set point and to a load disturbance unit step.

 49

-1.5 -1 -0.5 0 0.5
-1.5

-1

-0.5

0

0.5

φm=60°

O.l. Nyquist plots

P1 (solid) and P2 (dashed)
10-1 100 101

-40

-30

-20

-10

0
Mag. of the t.f. from l. d. to output (dB)

P1 (solid) and P2 (dashed)
0 10 20

0

0.5

1

C.l. set point step resp.

P1 (solid) and P2 (dashed)
0 10 20

-0.1

0

0.1

0.2

0.3

0.4
C.l. load dist. step resp.

P1 (solid) and P2 (dashed)

Figure 21: different processes with the same local behaviour and local requests on L(jω).

It is apparent that in both cases the required ωc and ϕm have been attained, that the resulting
set point responses are quite different and that the load disturbance responses are not so dif-
ferent. All these facts are because a local request (assigning one point of the open loop Ny-
quist diagram) has been made, and the effects of it depend on the overall loop dynamics, i.e.
on the overall aspect of P(jω). In particular, the integrator makes the two Nyquist plots out-
side the unit circle (i.e. at low frequencies) completely different, while this difference is sig-
nificantly ‘smoothed’ (the magnitude maxima are comparable and at similar frequencies) in
the transfer function from load disturbance to output unless at high frequency, where it is not
relevant in any case.

Observing the figure, we can now make some remarks. Should the tuning process have been
made taking into account the presence or absence of the integrator, it would have been pos-
sible e.g. to increase the requested phase margin so as to obtain a lower overshoot. This,
however, would also have slowed the load disturbance response. Or, the overshoot in the set
point response could have been cured with set point weighting, but this requires a 2-d.o.f.
regulator. And in any case, one point of P(jω) – which is the only information used in the ex-
ample for tuning – is not enough if not only ωc and ϕm but also the aspect of the obtained
transients are important, i.e. if tight control is required. In this case, either static information
must be gathered prior to tuning or it must be (implicitly) obtained after, measuring the re-
sulting overshoot to compute the set point weight. From this example, we can learn the fol-
lowing (and general) lessons.

• Static process information is always useful, though in general not easy to obtain and
leads to longer identification phases (e.g. it cannot come from a single relay experi-
ment).

• Static information can be more or less relevant depending on the regulator structure, on
the tuning policy and on the characteristics of the control problem at hand, especially on
whether tight control is required or not. This means that a skilled user needing to select
an autotuner should ask himself at least the following questions: do I have mostly a set
point tracking or a disturbance rejection problem? Do I need tight control or not? Do I
have integrating processes to deal with or not? Is the regulator 1-d.o.f. or 2-d.o.f.? Does
the autotuner use static information or not? This means also that the autotuner should be
documented well enough to allow these questions to be answered.

 50

It is very unlikely, however, that these autotuner characteristics do emerge from the product
documentation clearly enough. This is a pity since it adversely affects good product selection
and utilisation, which ends up in diminishing the users’ confidence in the autotuning tech-
nology as a whole. However it can be counteracted by users at least in two ways, which are
in some sense two further lessons learned:

• Encouraging autotuner manufacturers to enrich their documentation so that it will be in-
formative for knowledgeable users, by convincing them that this can make a product
more successful.

• Learning to ask themselves the questions above, to seek their answers in the documenta-
tion and, if they are not there, to find them by experimenting with the autotuner. In fact,
in the authors’ experience, once the user has clarified to himself what he wants to know
on a given autotuner, simple experiments with it in a laboratory are enough. As a further
remark, experiments in the field are not always the right way to answer these questions,
nor to evidence general (thus conceptually reusable) facts.

The second need is to gather information on the control-relevant process dynamics. This task
is even more difficult because, contrary to steady state information, it is necessary that some
clue on what are the ‘control-relevant’ dynamics be provided by the user or by the identifica-
tion. In fact, the concepts of ‘dominant’ and ‘control-relevant’ dynamics are often confused
by many users, and this too leads to poor autotuner utilisation. Also in this case, we illustrate
the idea with an example. Consider the process

()3s1

s5.01)s(P
+

+
=

Identifying a FOPDT model for it with the method of areas leads to the result depicted on the
left in Figure 22; on the right are the results of different PID tuning operations.

0 5 1 0 1 5
0

0 .2

0 .4

0 .6

0 .8

1

1 .2
Id e n t i f ic a t io n (m e th o d o f a re a s)

P ro c e s s (d a s h e d) a n d m o d e l (s o lid)

µ = 1
T = 1 .7 4
τ= 0 .7 5

0 5 1 0 1 5 2 0
0

0 .0 5

0 .1

0 .1 5

0 .2

0 .2 5

0 .3

0 .3 5

0 .4

0 .4 5

0 .5

a

b

c

d

a) IM C , λ = T

b) IM C , λ = T /1 0

c) IM C , λ = T /1 0 0
d) o n e -p o in t , ω c = 3 , φ m = 6 0 °

C lo s e d lo o p lo a d d is t . s te p re s p o n s e s

IM C (d a s h e d) a n d o n e -p o in t (s o lid)
Figure 22: different tuning operations on the same process.

Setting T=1.74 captures the dominant dynamics well enough. However this requires the in-
troduction of a delay (which is not physical). Moreover, the FOPDT structure ‘hides’ the ef-
fect of the zero. As a result, the cancellation policy of the IMC method will always produce

 51

an integral time larger then needed, so that only the gain will be used for opening the band-
width to achieve good disturbance rejection. The gain is however limited by the delay, so
that even very demanding speed specifications (e.g. λ=T/100) will not push the obtained re-
sult beyond a certain limit. Notice also the ‘saturation’ in the achieved performance: the im-
provement obtained between λ=T/10 and λ=T/100 is smaller than that from λ=T to λ=T/10.
It is also apparent that in this case tuning with a ‘one-point’ method, i.e. using e.g. a relay
based autotuner, can achieve far better results provided one stipulates a good specification in
terms of ωc and ϕm. Taking some general lessons also from this example, then, leads to the
following statement:

• Not always do the dominant and control-relevant dynamics coincide. The latter depend
also on what are the control needs. The problem is particularly relevant for processes
with complex dynamics, where low order models may be inadequate. In such cases, if
tight control is required, it is better not to use model based autotuners unless they have
the capability of selecting the model structure or the set of characteristics to detect
and/or measure, or at least to let the user select these. Note also that model or character-
istic structure selection is a very powerful feature but requires a significant degree of
understanding.

• Advanced autotuners with model or characteristic structure selection typically ‘hide’
this capability by asking the user what is the nature of the controlled variable (e.g. tem-
perature, level, flow) and sometimes some other basic information on the process, e.g.
whether the pressure of a liquid or of a gas is to be controlled. On the basis of the user
response they can then make some - generally loose - assumptions on the structure of
the process dynamics (in the model based case) or on which characteristics have to be
expected and quantified (in the characteristics based case). For example, in level control
the process is frequently integrating, in pressure control there is frequently a quick over-
shoot followed by smooth convergence to the steady state, and so on. Apparently, it is
necessary to provide this information correctly. It would be also useful to know which
assumptions the autotuner makes, but this is seldom revealed – mostly due to justified
know how protection – and is also quite difficult to figure out by experimenting with the
autotuner. The advice, when selecting one, is then to try providing some of the re-
quested information incorrectly. This should not be done in the field, of course, but is
very useful when testing the autotuner, e.g. simulating the transfer function seen by the
regulator with a PC. In so doing, one can always obtain a quite clear idea of which in-
formation is more critical, and sometimes (with good knowledge of the control theory
and some luck) also imagine at least the basic assumptions made by the autotuner.

• If one has a clear idea on what some closed loop characteristics must be, it is better to
use a characteristics following autotuner having those among the ones it is capable of
ensuring.

• If one has no well defined desires, a good idea is to use a model based autotuner (which
may sometimes achieve modest results but is very unlikely to provoke e.g. instability)
and observe its outcome. In our example it would have been evident that the IMC pro-
duced too large an integral time and that the disturbance transient could be accelerated.

 52

After the autotuning operation, an experienced user could easily refine the tuning (an
easier job than doing it from scratch).

Three remarks are now in order. First, the considerations we have made apply both to model
based and to characteristics based autotuning. No matter what the description of the process
behaviour is, certain quantities yield information on certain facts, and the knowledgeable
user must be able of understanding if these facts are the right ones to learn about for solving
his problem. In the great majority of cases where the authors have seen autotuners not behav-
ing satisfactorily, some wrong assumptions in this respect had been made when selecting the
autotuners themselves.

Second, when thinking of how an autotuner obtains the description of the process behaviour,
users tend to focus their attention primarily on “what it does to the process” and to worry
mostly about the required perturbations. This is important but is not the only aspect: it is
equally important to figure out “what it learns about the process” and to discriminate
whether the information learned are enough and adequate for solving the control problem. In
other words, first one has to worry about what the autotuner must know, then select one that
learns what is required with the minimum process upset: doing the reverse (i.e. limiting the
accepted upset a priori) is keen to limit the achievable results, and in the authors’ knowledge
it is another very frequent flaw in control systems design involving the use of autotuners.

Third, one of the reasons why a skilled human can outperform any autotuner is that gathering
process information and converting it into a description of the process behaviour automati-
cally is a very difficult task. Any human, looking at any response, can learn much more than
any automatic system. This means that, for evaluating an autotuner, it is very important to
see how rich, flexible and possibly configurable the process description employed is.

Of course, all these considerations apply to complex problems and where tight control is re-
quired. There is no need to say that these cases are a minority, and that in all the others al-
most any autotuner can do a decent job. In other words, the examples presented herein
should not make the reader think that autotuners need an amount of human effort comparable
to that required for tuning the regulators manually. We are discussing these problems be-
cause the aim of this section is to identify difficult cases, explain why they are difficult (i.e.
when and why the way an autotuner is selected and used may be critical) and giving clues for
solving them. In this respect we can conclude that no process description is ‘always’ good,
so that if an autotuner does not work properly also the identification phase, and not only the
specs or the tuning method, must be diagnosed.

4.1.2. Improving the accuracy in obtaining the process description
On-line outlier removal

During the identification phase, spurious phenomena may affect the measurements. This
must be counteracted somehow, otherwise any process description may be erratic. To give a
scheme, we can distinguish two main cases: fast phenomena spoiling only a few samples and

 53

slower phenomena acting for a time comparable with the process dynamics. The former case
is the typical effect of noise or transmission flaws, the second may also occur when ‘some
other manoeuvre’ is made on the process during a tuning operation. Of course the distinction
between ‘fast’ and ‘slow’ is relative, but in the majority of practical case it is quite easy to
distinguish the possible sources of outliers and to classify them in these two categories. We
shall refer to them as ‘instantaneous’ and ‘lasting’ outliers. Rigorously speaking there is a
third type of outlier, given by phenomena with a time scale longer than that of the process
dynamics. However this problem is traditionally treated in the framework of ‘detrending’, so
here it is dealt with in the corresponding section.

The effect of instantaneous outliers is relevant especially for model based autotuners and for
the determination of process characteristics in the frequency domain. In fact, it is intuitive
that a single spurious sample is more unlike to cause an erroneous detection e.g. of a settling
time than to affect the result of the FFT of an output record. In addition, instantaneous out-
liers are quite easy to eliminate: most autotuners impose a threshold on the measurement
variation and reject samples that exceed it. This threshold is normally computed on a statisti-
cal basis, and in some cases this mechanism is configurable. Also filtering (see later) may
help.

Lasting outliers are more difficult to eliminate and can affect any type of process description.
The first precaution to take is to ensure that during the identification phase nothing happens
that affects the process output other than the possible input stimulation made by the auto-
tuner. In the opposite case, any identification method would try to explain these effects as
input-output process dynamics, thus making an unavoidable mistake of unpredictable entity.
Of course this is a preventive approach, but little else can be made. It is however important
that when using the autotuner these situations be detected (usually by the user, who must
then be conveniently trained) so that the autotuning process can be aborted simply and with-
out consequences, which is another feature to look for when selecting an autotuner. It is im-
portant to note that user training in this respect is simple but necessary: the authors have seen
a number of failed autotuning operations in which the only problem was that plant operators
did not know that at least the loop they were tuning had to be ‘left alone’ during the tuning
operation. This is very simple to explain and understand and solves the great majority of that
kind of problem. It is also obvious for anyone with a minimum knowledge on the matter, but
curiously is not always transmitted to operators.

Filtering

Filtering is used mainly to eliminate the effects of noise, including instantaneous outliers.
The filters used are normally lowpass, and it is desirable that their bandwidth be configur-
able. Some systems determine it automatically by recording the process output while the
control is kept constant. If the filter is configurable, it must be considered that any identifica-
tion procedure will identify the process in series with the filter, so that an incorrect choice of
it may deteriorate the identification results.

 54

On the basis of considerations similar to those made for outliers, it is intuitive that the poten-
tial negative effects of filtering are more noticeable in model based autotuners, and espe-
cially in those that employ optimisation or prediction based techniques.

Detrending

A process response is said to have a superimposed ‘trend’ if it is affected by very slow phe-
nomena, lasting more than the dynamics that are relevant to the response itself. It is impor-
tant to note that these phenomena may be completely exogenous or depend (at least partially)
on the possible stimulation given to the process. In other words, the qualifying aspect of a
trend is only the fact of being slow and typically of modest entity, not the fact of being ex-
ogenous.

To explain this with an example, we may consider the response of the temperature of a body
to a step in the power of its heater. If this response is measured while the temperature of the
surrounding air is varying very slowly, it will have a trend. However, the air temperature
variation could be mostly exogenous or be also significantly due to the thermal exchange
with the body itself and/or to heater losses. In a very simplified case, this means assuming
either that the air temperature increases linearly with time or that the temperature of ‘far-off’
air stays constant while that of ‘surrounding’ air increases due to the exchanges with the
body and with far-off air. These two situations correspond to the models

()









+=

−−=

tTTT

TTKP
dt

dT
C

agrad0aair

airbodybodyairheater
body

body

and

()

() ()















=

−−−=

−−=

0afarair

farairsurrairsurrfarsurrairbodybodyair
surrair

air

surrairbodybodyairheater
body

body

TT

TTKTTK
dt

dT
C

TTKP
dt

dT
C

Implementing and simulating these two models (where the meaning of symbols should be
self-explanatory) in the Simulink environment produces the results depicted in Figure 23,
where the first model and its transients are reproduced in the upper half while the lower half
is devoted to the second model and to the transients obtained with it.

It can be easily observed that, when the air thermal capacity is bigger than that of the body,
even if the thermal exchange coefficient from body to surrounding air is larger than that from
surrounding air to far-off air (a quite realistic situation), the surrounding air temperature re-
sponse is slow. So slow in fact that in the time scale of the body temperature response it is

 55

practically a straight line. As a result, without quite detailed process knowledge it is appar-
ently impossible to distinguish one case from the other.

Exogenous variation of Tair:
Cbody = 1; Kbodyair = 0.1;

Tbody(0) = 25; Tair(0) = 25;
Tagrad = 0.005;

Variation of Tair caused by heater:
Cbody = 1; Kbodyair = 0.1;

Cair = 190; Ksurrfar = 0.01; Tfarair = 25;
Tbody(0) = 25; Tair(0) = 25;

Ta2

Ta1

Tb2

Tb11/s

TbodyPower unit step

1/Cair

Ksurrfar

Kbodyair

1/Cbody

Kbodyair

1/Cbody

Ta0+Tagrad*u

Tfarair

1/s

 Tbody

1/s

 Tair

Power unit step

0 200
25

30

35

40
Tbody (solid) and Tair (dashed)

0 200
25

30

35

40
Tbody (solid) and Tair (dashed)

Figure 23: trends caused by exogenous and endogenous phenomena.

In the autotuning context detailed process knowledge is seldom available, and strictly speak-
ing assuming its availability is in contradiction with the principle itself of autotuning. So the
problem is not to understand the reasons of a trend or to distinguish it from the effects of
unmodelled dynamics (corresponding in the example to the air thermal dynamics if the first
model is used), rather to recognise the presence of a trend and to eliminate its effects on the
identification of the process behaviour description.

Coming back to the example, it should be clear that when controlling the body temperature
the relevant dynamics are those of the body. These do emerge from the step response but,
considering the time scale of the body temperature response, it seems that no steady state is
reached. So, trends may be viewed as another reason why detecting static characteristics may
be tricky.

The effects of absent or incorrect detrending can vary a lot depending on all parts of the
autotuner’s operation. It is important to remember that in any case they must not be consid-
ered a marginal aspect. Suppose, for example, that in the simple case described a PI had to
be tuned from a first order model, that the time constant T of this model be computed as 1/5
of the measured settling time, that its gain µ be obtained from the steady state value of the
step response and that tuning be made by pole/zero cancellation so that the closed loop set-
tling time is equal to half the measured open loop one. This implies that Ti=T and K=2/µ.
Note that this is a quite crude procedure, but especially for very low end products it is not so
far from reality.

In the example, which is deliberately extreme, the response of the body temperature (in the
second more realistic model) settles when that of the air temperature does, in approximately
1.2·105 seconds. The amplitude of the corresponding transient of the body temperature is ap-

 56

proximately 110 degrees. This means µ=110 and T=24000, while the detrended response of
the body temperature provides approximately µ =12 and T=10. Denoting with (a) the PI con-
troller tuned with the detrended response and with (b) the other, the closed loop responses to
a unit set point step are shown in Figure 24: notice the different time scales. Apparently the
PI (b) ‘regulates the wrong dynamics’, but if nobody has told it what are the relevant ones it
can only do what it has been tuned for. Realistic cases are not so extreme, but it should be
clear that a ‘dumb’ tuning policy can easily fail and that the absence of detrending is a fairly
evident symptom of dumbness.

0 20 40 60 80 100
25

25.2

25.4

25.6

25.8

26

26.2
Closed loop response to a unit SP step (a)

time(s)
0 2 4 6 8 10

x 10 4

25

25.2

25.4

25.6

25.8

26

26.2
Closed loop response to a unit SP step (b)

time(s)

Figure 24: closed loop responses with and without detrending.

To generalise from the example, we can easily state that the solution to this problem is to in-
struct a possible autotuner as follows: I know that a steady state must be reached by the step
response, so when you record it and see it goes asymptotically to a straight line, consider this
as a steady state because there must be something else (I don’t care what) that acts like
‘moving some base value’ for the response (note that, observing the phenomenon from the
body, that is exactly what happens with the air temperature in both cases). So, identify the
slope of this trend and use it to subtract a straight line from the response you have: that is the
response to consider for describing the process, because that is the one containing the rele-
vant phenomena.

For doing this it suffices to say ‘the process is not integrating’, which is an information that
most advanced autotuners accept and that it is important that the user be able of providing
consciously. Note that the same could be said if a (slowly) oscillating trend were observed,
due, say, to cyclic climatic variations throughout the experiment. In this case the user should
instruct the autotuner that ‘the process has no oscillatory dynamics’ and a periodic trend
would have to be detected and subtracted.

To help non specialists, advanced autotuners normally do not ask whether the process is in-
tegrating, oscillating or not. Instead, they adopt the same policy described for model or char-
acteristics structure selection, requesting the user to provide some basic information on the
nature of the loop. This information can also be used for deciding which aspects of the re-
sponse used for the identification are probably spurious, and correspond to trends that must
be removed. We can then notice again that for judging an advanced autotuner it is important

 57

to understand (as completely as possible) what assumptions on the process dynamics, thus on
the expected responses, it makes depending on the information provided by the user.

4.2. Accepting (and checking) user specifications
Contrary to (inexperienced) intuition, this is one of the most important parts of an autotuner.
Specifications concern stability, robustness, disturbance rejection and set point tracking. The
first thing to know in this respect is whether the autotuner exploits the 2-d.o.f. structure of
the PID or not, because only in the former case can stability, robustness and disturbance re-
jection issues be separated from tracking ones. In any case, the main problem for autotuners
is that possible inconsistent user requests must be dealt with. This makes industrial products
adopt, in extreme situations, one of the three approaches described in the following together
with their advantages and potential pitfalls.

4.2.1. Autotuners with no specs
Such autotuners are extremely simple to use, do not aim at particularly sophisticated results
but can cope with most problems satisfactorily. The only way to make them fail is to use
them in a situation where their identification mechanism (which is normally very simple) can
fail significantly, like we have shown in the body temperature example. Fortunately, in prac-
tical cases this is not a difficult precaution to take on the sole basis of (conscious) common
sense.

4.2.2. Autotuners with lexical (word) specs
These products allow more user control in that they accept specs like ‘minimise the over-
shoot’, ‘achieve the shortest settling’ or ‘minimise an index’ like e.g. the ISE. This normally
reflects in characteristic following tuning made by optimisation, where the spec dictates the
cost function to be used. Some autotuners of this kind allow the user to select the regulator
structure, others choose it on the basis of measured data. For these autotuners the identifica-
tion phase is more critical than in the previous case, and that is why more sophisticated tech-
niques are used. It is important to note that this approach is not suited for tight control, be-
cause in general it is not easy to forecast how achieving a characteristic is compensated for
in terms of the others and how minimising an index reflects on the shape of the achieved
transients.

This is particularly true if the regulator structure is selectable, as we now show with an ex-
ample. Consider a process described by a delay-free first order transfer function. If a PI regu-
lator is tuned for it, no matter which synthesis policy is adopted, the open-loop transfer func-
tion will be approximated around ωc by L(s) = ωc/s. If a PID is adopted, L(s) will have a sec-
ond zero above ωc, i.e. it will be approximated by L(s) = ωc(1+sα/ωc)/s, where α ∈ (0,1) is
the high frequency open-loop gain. Suppose now that the (lexical) spec is to minimise the
ISE for a step variation of the set point, which in the PI and PID cases turn out to be

 58

 ∫∫
∞

α+
ω

−
∞

ω−

α+ω
=

α+
=

ω
==

0 c

t
1

2

2PID
0 c

t2
PI)1(2

1dte
)1(

1ISE,
2

1dteISE
c

c .

It is apparent that the ratio between the PI and the PID ISE is 1+α, thus the PID appears bet-
ter in any case. It is also apparent, however, that this ISE improvement is paid in terms of a
higher value of the open-loop high frequency gain. Moreover, the bigger this reduction is,
the longer and closer to the 0 dB axis the plateau of |L(jω)| after ωc has to be, which means
poor robustness.

Coming to the quality of the output transients, the situation is depicted in Figure 25, where a
normalised time τ = ωct has been introduced for convenience. The ISE reduction provided by
the PID is essentially due to the prompt response in the first instants (which requires a bigger
control spike), while the settling time increases.

0 2 4 6 8 1 0

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1
C l o s e d l o o p e r r o r s t e p r e s p o n s e

e
P

I (
s

o
lid

)
a

n
d

 e
P

ID
 (

d
a

s
h

e
d

)

N o r m a l i z e d t i m e (ω
c

t)

- 4 0 - 3 0 - 2 0 - 1 0 0
0 . 6 5

0 . 7

0 . 7 5

0 . 8

0 . 8 5

0 . 9

0 . 9 5

1
S e t t l i n g t i m e v e r s u s H F l o o p g a i n

t s
e

tP
I/t

s
e

tP
ID

H F l o o p g a i n (d B)
Figure 25: PI versus PID tuning with ISE minimisation.

In this case, minimising the same index means different things if different controllers are se-
lected. Generalising, then, we can say that

• Optimising integral indexes like the ISE is a good policy for achieving ‘compromise’
solutions where no tight objective dominates all the others, but can sometimes produce
unexpected results. It must be kept in mind that an optimiser achieves its goal whatever
this means, and that if one has desires not directly reflected into an index, problems like
this are quite likely to arise.

• In general, autotuners based on index minimisation (and, more generally, on lexical
specs) require the user to select the correct index (or spec) and the correct regulator
structure for the problem at hand. Index and structure selection is often done automati-
cally, as already discussed, but autotuners like these are not the best choice if tight con-
trol is required.

 59

4.2.3. Autotuners with numeric specs
These allow the maximum user control and are an almost obliged choice if tight control is
required. Identification is very important and specification correctness even more. In fact,
this is the only case where user requirements can prove inconsistent.

This problem is more relevant in autotuners where specs are directly related with ‘control-
theoretical’ characteristics. For example, where the user is allowed to select the cutoff fre-
quency and/or phase margin explicitly. There is no need to prove that these two specs (which
are quite common) can easily be inconsistent, so the autotuner must make a choice and fulfil
only one of them. The problem is that there is no way of ensuring that this choice will reflect
the user requirements. As such, we can state the following:

• Autotuners with numeric specs are to be used wisely. They are powerful tools for tight
control, especially if they use the 2-d.o.f. structure, but must be used by people capable
of giving specs correctly or at least not in an inconsistent way.

• Before adopting such an autotuner, test several others (if possible) selecting apparently
inconsistent requests, see what they do and choose the ‘most reasonable’ one for the
problem at hand: here, there is really no general criterion. It would be appreciated that
documentation were available to allow one to forecast the autotuner behaviour with an
inconsistent request, but this is rarely the case (and, we must admit, it is very difficult to
document these facts satisfactorily).

4.3. Computing and validating the regulator parameters
At this point, an autotuner can compute the PID parameters with the tuning method it is
based on. After this step, it is necessary to check the obtained result against some validation
criteria. These can be broadly classified in two categories.

4.3.1. Criteria for checking the tuning results
Since in solving the equations required for tuning it is often necessary to employ numerical
techniques and even quite crude approximations, it is generally required to check that the de-
sired results have been attained. In model based autotuners it is also possible to forecast the
loop behaviour before actually modifying the regulator parameters. For obvious reasons this
is not possible in the characteristic based case. In this case, sometimes a small perturbation is
given with the tuned regulator and if results are not satisfactory the previous tuning is re-
stored. In the experiment based case this check is often done to recover from the experiment
perturbation (this is also useful in the model based case). Product documentation normally
says almost nothing on these checks, which is sometimes a pity because their appreciation
allows one to understand the autotuner’s operation more precisely. In some cases, these
checks require additional process perturbation.

 60

4.3.2. Criteria for checking the ‘aspect’ of the obtained regulator
As a final step, the regulator is checked against some parameter consistency rules; for exam-
ple, most autotuners verify that Ti>Td. Also the implementation feasibility is checked, typi-
cally verifying, say, that no regulator time constant is smaller than ‘few times’ the sampling
time. Finally, very high-end products also check the sensitivity of parameters to specifica-
tions, to avoid the situation where a small change in requirements results in a completely dif-
ferent regulator. This is not required, strictly, but nevertheless users are keen to think that the
dependence of parameters on specs must be in some sense continuous. Also these checks are
normally documented up to a very limited extent, but for selecting a product this is less im-
portant.

5. Examples of industrial autotuners

Applying the obtained knowledge to evaluate a product
Throughout the previous sections we have acknowledged the features of the various types of
autotuners with the aim of helping the reader understand their operation and, above all, to se-
lect one on the basis of the characteristics of his particular control problem. In this section
we briefly present some industrial products. Firstly, to show how the features that have been
highlighted earlier can be detected in the manufacturers’ documentation. Secondly, to see
how this information can then be evaluated as for its suitability for a given application.

This section is in two parts. The first part looks at autotuners that are supplied by the control-
ler manufacturers. The second explores some of the new software environments that gener-
ally offer analysis and diagnostics as well as loop tuning capabilities. In either case the lists
are not extensive but simply represent examples typical of those likely to be encountered by
practicing control engineers.

An excellent review of the loop tuning tools available, about five years ago, was presented in
an article in the November issue of Control Engineering (VanDoren, 1997). This section
complements that article and also provides web site details of the controllers and tuning en-
vironments cited, for those readers who wish to obtain more information.

5.1. Controllers with ‘built-in’ tuning capability
5.1.1. The Foxboro EXACT
In this ‘historical’ autotuner (Bristol, 1986) the tuning operation is initiated automatically
whenever the error exceeds a user-specified threshold. When this occurs it is assumed that
either a set point change or a disturbance might have occurred. In both of these cases the er-
ror transient may resemble that of Figure 26 (a) and (b), respectively. Heuristic logic – de-
tails are not published - is used to decide whether a ‘proper’ transient has occurred and to
compute the peaks e1, e2 and e3 by means of pattern recognition techniques.

 61

time

e1

e2

e3

e(t)

time

e1

e2

e3

e(t)(a) (b)

Figure 26: examples of error transients for (a) a set point change and (b) a load disturbance.

Tuning is completed once specified values of ‘damping’ and ‘overshoot’ are satisfied, i.e. the
two quantities (e3-e2)/(e1-e2) and |e2/e1| match given values. User specifications are given in
terms of these quantities: notice that the terms ‘damping’ and ‘overshoot’ are not used with
their normal interpretation. The autotuner uses a complex set of heuristic rules also for this
purpose.

The EXACT requires quite a lot of prior information for tuning. For example, it is necessary
to tell it how long to wait for an error peak before concluding that it will not occur. The most
important thing, however, is in order to speed up convergence, initial regulator controller pa-
rameters must be provided. To help the user supply this information, the EXACT has a ‘pre-
tune’ mode based on an open-loop step test and on the Ziegler-Nichols rules.

The EXACT is not experiment based apart from the pretune phase and from the set point
modification case. It is characteristic based (it uses the error response peaks), as well as
characteristic following (maximum allowed damping and overshoot in the sense stated
above). It features a rule base (it uses heuristics and pattern recognition) and specifies a 1-
d.o.f. PID structure. It is a good tool but difficult to completely understand and sometimes to
‘drive’, given the complexity of the heuristics involved and the limited amount of documen-
tation on it (see the Exact technical information), and Foxboro for controllers using this
technique.

5.1.2. The Honeywell AccuTune
This autotuning method, described in (Åström et al., 1993) is implemented in several con-
trollers, see e.g. (Honeywell controllers) where several powerful devices are described with
trend removal capabilities, set point programming and so on. It can only be used for stable
processes.

It is initiated by setting the controller to manual, then driving the controlled variable to a
steady state ‘a little away’ from the set point before switching to automatic. This initiates a
step experiment, where the control step amplitude is calculated (but no information is sup-
plied on how) in order to force the process variable back to the set point. The experiment
leads to a first or second order model (the selection is automatic), from which the PID pa-
rameters are computed by convenient rules based on cancellation and influenced by the

 62

http://www.foxboro.com/m&i/documentation/foxdoc/ti/ti039200.pdf
http://www.foxboro.com/m&i/controllers_recorders/specs_controllers.htm
http://content.honeywell.com/ipc/

process order and by the presence of a significant process delay. The PID is then set to
automatic and, once the set point is reached, a ‘fine tuning’ of its parameters is carried out on
the basis of steady-state levels. The user can decide whether tuning must be made only on set
point changes or also on transients that are assumed to be caused by load disturbance, and
which is the minimum set point change that will trigger the tuning.

Thus, the AccuTune is model based with automatic structure selection. It also is experiment
based, and characteristic following (it cancels the model poles aiming at fast response with
constraints on the phase margin and on the high frequency regulator gain). It uses steady-
state information and leaves quite limited user intervention possibilities. It also refers to the
1-d.o.f. PID structure and possesses a continuous adaptation feature. For a list of controllers
using this technique, see Honeywell controllers).

5.1.3. The Yokogawa SLPC
This autotuner (see e.g. Yokogawa, 1993) is initiated on user demand and experiment based
(a step added to the control signal in closed loop). It is based on a FOPDT model identified
by optimisation on the basis of the captured response. It requires the user to specify the
‘type’ of the response in terms of maximum overshoot (no overshoot, 5%, 10% or 15%),
thus it is characteristics following.

Tuning is decided by rules developed statistically on a large number of simulations. These
rules minimise an integral index (ITAE, ISE, and so on) chosen on the basis of the response
type requested. The SLPC refers to a 2-d.o.f. PID structure where Rff is set by the user and
does not use steady-state information. It has a ‘pretune’ mode based (as usual) on an open-
loop step test and has also a continuous adaptation feature. For a list of controllers incorpo-
rating this technique see the Yokogawa page.

5.1.4. The ABB ECA 600
The auto-tuning mode has to be enabled by the operator. The method is based on a relay ex-
periment with hysteresis in closed loop. The value of controlled variable should be close to
the set-point, when the auto-tuner is initiated. The procedure starts by inserting a small step
to the system and this causes the system to oscillate. The step-value has to be selected in ad-
vance.

The tuning function itself has similarities with the manual Ziegler-Nichols method, precise
information about the tuning method is not available. The auto-tuner adjusts the amplitude so
that the process value will not be greater than the level that is necessary to isolate the meas-
urement noise. The auto-tuner is able to judge if the derivative element is necessary. An
adaptive procedure is available which can be used as a fine-tuner. For further details, see the
ABB web site.

 63

http://content.honeywell.com/sensing/control/products/controllers.stm
http://www.yokogawa.com/MCC/menu_s.htm
http://www.abb.com/

5.1.5. The OMRON E5AK/E5EK
The Omron E5AK/E5EK calculates suitable PID parameters using a fuzzy-self-tuning func-
tion. The controller itself determines when tuning is necessary. Three different modes are se-
lectable: step response tuning (SRT), disturbance tuning (DT), hunting tuning (HT). In the
SRT mode the controller parameters are tuned, when a new or different set-point change oc-
curs. In the DT mode the PID-parameters are adjusted so that the controller output stays
within the target range that has to be specified in advance. In the HT mode the controller pa-
rameters are amended once hunting occurs. HT will be enabled when four or more extreme
control values occur, provided SRT is not being executed.

5.1.6. The National Instruments Autotuning PID
This quite recent autotuner is initiated on user demand, experiment based (it uses relay feed-
back on the set point), characteristics based (the process description is given by the ultimate
gain and frequency, see e.g. (Åström and Hägglund, 1984), characteristics following with
lexical specs (the user has to select the controller type - P, PI or PID - and ‘normal’, ‘fast’ or
‘slow’ tuning).

Parameters are computed by Ziegler/Nichols-like formulae, described in the product docu-
mentation. The regulator has an ISA-like form: there is no derivative filter but a (fixed) one
on the process variable, output derivation is used and set point weighing in the P action is
available: in the online help the weight is called ‘relative emphasis of disturbance rejection
to set point tracking’. Gain scheduling and a static nonlinear characteristic on the error are
also available.

While presenting all the advantages and pitfalls of autotuners obtaining local process infor-
mation from relay feedback (see the corresponding section), this one has two peculiar fea-
tures that are worth pointing out. First, tuning is accomplished by the used via a ‘wizard’, i.e.
a sequence of interactive steps guided by windows carrying the necessary instructions and
the usual ‘next/previous/cancel’ buttons to navigate back and forth in the procedure. Interest-
ingly enough, in this wizard the recognition of the steady state prior to the relay test and that
of the permanent oscillation are made by the user. This type of interactivity, where human
insight is employed for decisions that are particularly difficult to automate, seems to be a
trend in new autotuners. It can lead to good results but requires at least a minimum of in-
sight.

The second feature is that both for the controller and for the autotuner the source code (in the
‘G’ graphical programming language) is visible. This means that a conscious user can in-
spect it and learn a lot about the autotuner’s operation (see the LabVIEW PID Control Tool-
set User Manual).

 64

http://www.omron-ap.com/index_productpage/e5zk.htm
http://www.ni.com/pdf/manuals/322192a.pdf
http://www.ni.com/pdf/manuals/322192a.pdf

5.1.7. Additional Controller Information
The following table reports a short (and in no sense exhaustive) list of other controllers with
autotuning and/or adaptation capabilities, together with the web sites where additional in-
formation can be obtained.

Controller Manufac-
turer

Law GS AT Ad FF Web site

ECA 600 ABB PI(D)
pPI

• • • • http://www.abb.com/

1/16 DIN
Universal
Process
Controller

Athena P-I-D • http://www.athenacontrols.com/pages/tempproc.html

UCD3863 Bristol-
Babcock

PID • • • http://www.bristolbabcock.com/productliterature

2408 PID
Controllers

Eu-
rotherm

PID • • • • http://www.eurotherm.com/products.htm

Series 2000 FGH PID • • http://www.fgh.co.uk/
762CNA Foxboro P-I-D • • http://www.foxboro.com/m&i/controllers_recorders/s

pecs_controllers.htm
UDC 5000
Ultra

Honeywe
ll

PID • • • http://catalog.sensing.honeywell.com/

TC16 Leeds&N
orthrup

PID • • http://www.procinst.com/leeds&northrup-tc8-16.htm

E5AK Omron PID • http://www.omronsupport.net/knowhow
EC300 Toshiba PID • • http://www.tic.toshiba.com/
SLPC Yoko-

gawa
PID • http://www.yokogawa.com/MCC/ys80.htm

GS Gain Scheduling
AT AutoTuning
Ad Adaptation
FF FeedForward

5.2. Independent Software Tools
There has been an explosion in the number of loop tuning packages designed to facilitate
both novice and experienced user. A limitation of some of the earlier systems was that con-
nection between the PC (containing the tuning software) and the controller relied on an
ADC/DAC interface card in the PC and knowledge of the controllers communication proto-
col which was not always easily accessible. Some systems also used ‘current clamps’ that
had to be physically connected to the input and output terminals of the controller to provide
the necessary tuning information. Traditionally, each software or application developer was
required to write a custom interface to allow data exchanges between the various hardware
devices. Most modern systems still provide one or both of the above options but much more
reliance is placed on exploiting OPC server technology. OPC is the standard for plant floor
communications between data servers and client applications. The OPC specification is a
non-proprietary technical specification that defines a set of standards based upon Microsoft’s
OLE/COM technology. The application of the OPC standard makes process interoperability
straightforward by defining a common, high performance interface that can be reused by

 65

http://www.abb.com/
http://www.athenacontrols.com/pages/tempproc.html
http://www.bristolbabcock.com/productliterature
http://www.eurotherm.com/products.htm
http://www.fgh.co.uk/
http://www.foxboro.com/m&i/controllers_recorders/specs_controllers.htm
http://www.foxboro.com/m&i/controllers_recorders/specs_controllers.htm
http://catalog.sensing.honeywell.com/
http://www.procinst.com/leeds&northrup-tc8-16.htm
http://www.omronsupport.net/knowhow
http://www.tic.toshiba.com/
http://www.yokogawa.com/MCC/ys80.htm

SCADA, control and custom client applications. Some of the features present in these new
tools include:

• Data conditioning prior to modelling (outlier and ‘bad data’ removal)

• Process model derivation (transfer function or frequency response)

• PID controller design including (a) empirical ‘look-up’ table (b) Åström-Hägglund (c)
IMC and (d) optimal methods

• Performance checking through system simulation

• Robustness analysis

• Looking simultaneously at more than one loop

• Process diagnosis to detect (a) hysteresis, (b) stiction (c) oversized/undersized valves
(d) excessive measurement noise (e) need for gain scheduling

• What-if simulations

• Report preparation facilities

• Lots of excellent graphics support

Because of space restrictions the intention is to identify some of the more well known prod-
ucts by their web site addresses and this information is tabulated below. At these sites a con-
siderable amount of information is available plus downloads of the software.

Software tools Web site
Tune Wizard

PID Controller Tuning, Process Diagnostics, Loop Simulation
www.tunewizard.com

RaPID
Robust Advanced PID Control

www.mathworks.com
or www.ismc.be

PROTUNE™
Complete software hardware system that records, troubleshoots and analyses

dynamic data

www.protuner.com

EXPERTUNE®
PID tuning, analysis and simulation software

www.expertune.com
or 169.207.153.173

Control Arts Inc.
Model Identification and PID tuning software

www.controlartsinc.com

Rockwell Software
RSLoop Optimizer

www.software.rockwell.com

BESTune
PID Controller Auto-Tuning software

bestune.50megs.com/

 66

http://www.tunewizard.com/
http://www.mathworks.com/
http://www.ismc.be/
http://www.protuner.com/
http://www.expertune.com/
http://169.207.153.173/
http://www.controlartsinc.com/
http://www.software.rockwell.com/
http://bestune.50megs.com/

6. Some samples of the current research
How advanced autotuning concepts are put into operation

This section is aimed at presenting some ‘research’ autotuners taken basically from the au-
thors’ experience, so as to provide the reader with at least some samples of what is being
done. The descriptions reported here tend to be longer than those of industrial products be-
cause the references provided are written in a more ‘academic’ style.

6.1. A relay autotuner exploring the process Nyquist curve
This autotuner is presented in (Leva, 1993). It first performs a (short) double step test to see
if the process is integrating, then identifies one point of its Nyquist curve by a relay experi-
ment. A delay is cascaded to the relay to explore several points, as discussed. This search is
aimed at finding the frequency where the process magnitude is 1/10 of the static gain (in the
non integrating case) or 0.1 (in the integrating case).

Tuning is made by ‘moving’ this point onto the unit circle with the user-specified phase
margin. The method ensures a ‘reasonable’ cutoff and a regulator magnitude of at least 20
dB at the cutoff, which results in good disturbance rejection.

The autotuner is initiated on demand, characteristic based, characteristic following, and uses
static information. An example autotuning session is shown in figure 27.

Figure 27: autotuning session.

6.2. A robust autotuner based on the IMC and on optimisation
This autotuner is described in (Leva and Colombo, 2001a) and works for asymptotically sta-
ble processes. It is based on the identification of a FOPDT model in the form (15) by an open
loop step test and the method of areas. Subsequently, the IMC formulae (18) are used for
synthesising the block Rfb(s), see figure 11.

 67

Parameter λ can be chosen by the user, but a limit on it is imposed on the basis of an esti-
mate of the additive model error magnitude obtained in the identification phase with the
method described in (Leva and Colombo, 2000). The computation of this limit on λ is dis-
cussed in (Leva and Colombo, 2001b); in so doing, λ becomes a stability degree user request
over a minimum forced by the autotuner on the basis of data. After Rfb(s) is tuned, a
convolution model of the loop part of the control system is computed. This contains Rfb(s)
and the response data, not the FOPDT model, so that no structural hypotheses on the process
dynamics are involved.

Finally, Rff(s) is tuned by minimising with respect to b and c the ISE between the control
system response (computed with the convolution loop model) and that of a first order trans-
fer function with unity gain and delay equal to that of the FOPDT model, whose time con-
stant becomes the user set point tracking performance request and cannot interact with stabil-
ity, robustness and disturbance rejection because it only affects Rff(s). This method for opti-
mising the weights b and c is described in (Leva and Colombo, 1999).

This autotuner is then experiment based, model based, model following (by cancellation for
Rfb and by optimisation for Rff), initiated on demand. The user interface of the autotuner has
been designed so that the user can modify the stability and performance request and see the
achieved results (computed with the convolution model) on line; this has proven to be highly
appreciated by several people with very different degree of control culture. An example ses-
sion with the autotuner is shown in figure 28.

 (a) (b)

Figure 28: the autotuner’s user interface (a) and results (b).

6.3. The MasterTune CAD Software
The MasterTune software has been developed to help in the automatic tuning of PI, PID
and pPI controllers. The kernel of the MasterTune software (Cox et al., 1994) for the PI and
PID cases is the Åström-Hägglund (1984) autotuner. However, it has a family of additional
refinements that make it easy to use whilst at the same time producing consistent behaviour
at least equivalent to that obtained when using well tried empirical formulae (Cox et
al.,1997). The main features of the software are briefly outlined next. During the tuning

 68

phase the values of the various test parameters used are normally set to default values by the
software. If the user so chooses, these values can be modified to suit individual requirements.
The parameters which can be modified include:

• The percentage overshoot: this is the amount of overshoot the closed loop system will
exhibit when compensated by the tuned PI controller. The percentage overshoot is used
to determine the phase margin required by the design equations.

• The relay characteristics: the amplitude (to control the size of the limit cycle oscillations
during tuning) and the hysteresis (used to prevent false switching caused by noisy sig-
nals).

• Tolerance between peaks: used by the software to detect when the tuning phase has been
completed.

• Constraints: control over the allowable level variations of both the process and manipu-
lated variables.

The process analysis phase is the preliminary step of the tuning procedure. Here an open
loop step test is conducted and a FOPDT model automatically calculated using the character-
istic area method (Nishikawa et al. 1984). The process inputs and outputs are visually dis-
played to the process operator throughout this phase. On completion of the test, the model is
overlaid onto the process reaction curve allowing an informed judgement to be made about
the quality of the model (figure 29).

Figure 29: typical process analysis result

PI QuickTune

If the time delay is not appreciable in relation to the time constant the software recommends
that a PI controller be used. This fast tune facility uses the transfer function obtained in the
process analysis phase to calculate the controller settings using some empirical formula,
typically those recommended by Cox et al (1997) - reference. This feature can be used to es-
tablish a satisfactorily tuned control loop in a very short period of time (relevant of course to
the dynamics of the process).

 69

Predictive PI (pPI)

If the time delay is large compared to the principal time constant, then a PI controller will
not be able to yield satisfactory performance. In this situation the software recommends that
the pPI strategy is used and calculates the controller parameters. For implementation of the
pPI algorithm it is recommended to use a programmable process controller.

Setting the relay characteristics

If, as recommended, the fast tune procedure is by passed in favour of relay feedback autotun-
ing, then the relay characteristics must be set. The process analysis phase calculates a value
for the relay height that will produce a limit cycle with an amplitude approximately equal to
that set in the ‘Set test parameters’ phase above. Additionally, the software will analyse the
level of noise imposed on the process variable and use this value to suggest a level of hys-
teresis.

This stage relieves the process operator of the task of specifying the relay characteristic. The
operator only needs to specify the maximum process variable swing allowed by the closed
loop system. Further, it should be noted that this stage may only be required when tuning a
process for the first time. In subsequent sessions, the relay parameters can be entered directly
based on previously recorded values.

AutoTune (PI strategy)

When the autotune in invoked, the relay and integrator force the process variable to oscillate
with the specified amplitude, see figure 30. When the tuning phase is completed as indicated
by a flag, a PI controller is calculated which will result in a system with the requested level
of overshoot

Figure 30: CAD software screen dump showing Autotuning in process

 70

Evaluation

Once the appropriate controller has been selected and tuned, the evaluation stage can be im-
plemented. Here the controller is put into automatic mode and, if desired, a step change can
be induced in the set-point (see figure 31). This, as well as each other stage in the tuning cy-
cle, can be logged and saved in a data file to provide a full record of the tuning cycle.

Figure 31: CAD software screen dump showing evaluation of PI controller

The MasterTune software incorporates many attractive features that provide an automatic
medium for PID controller parameter determination. Another attractive feature is the ability
to download the parameters directly into the actual process controller once the values are ac-
cepted. When this stage is complete the PC is disconnected form the controller. A new tun-
ing cycle with a different controller begins once the communications link is again estab-
lished.

7. Soft-Computing methods for PID Autotuning

A novel alternative and a very promising research field
7.1. What is Soft-Computing?
Soft-computing is a relatively recent collection of methodologies, which have been inspired
by natural phenomena. The term ‘soft’ was coined by L. A. Zadeh (Zadeh, 1965) as opposed
to conventional ‘hard’-computing, in order to emphasise their tolerance for imprecision and
uncertainty. The core methodologies of soft-computing are fuzzy logic, neural networks and
evolutionary computing. Although these methodologies have different genesis, they can be
seen as complementary rather than competitive. Recently, hybrids systems, such as neuro-
fuzzy, neuro-genetic or even neuro-fuzzy-genetic systems have been proposed, and it is our
feeling that this trend will increase in the future. Before describing some applications in PID
autotuning, let us briefly introduce each methodology.

Artificial neural networks were inspired by the human brain operation. They consist of proc-
essing elements (the neurons), each one with very small processing capability, densely inter-

 71

connected in a network through the use of weights, each neuron acting independently of the
others. A neural network, as the brain, has the capability of learning. There are a large vari-
ety of neural networks, employed for different purposes, and using different paradigms of
learning (the interested reader can consult, for instance (Haykin, 1999), (Principe et al,
2000). Here we only mention the ones used in the chosen applications.

In PID autotuning, they are used for nonlinear function approximation purposes. The most
widely know neural networks are Multilayer Perceptrons (MLPs). They have, as the name
indicates, a layered structure, consisting of an input layer (a buffer), one or more hidden lay-
ers where typically sigmoidal functions are used, and an output layer, where linear functions
are usually employed. Although different learning algorithms can be employed, the most
well-known is the error back-propagation (BP) algorithm. This belongs to the class of su-
pervised learning algorithms (supervised means that a set of desired outputs is available for a
set of inputs, and the role of the learning algorithm is to minimise the sum of the squared er-
rors between these two quantities), and the BP algorithm performs its task that by comput-
ing, in an iterative fashion, the gradient of the criterion with respect to the weights and adapt-
ing them in the direction opposite to the gradient. The name of the algorithm comes from the
fact that the gradient is computed by propagating the error from the output towards the input,
therefore ‘back’-propagating it. If the set of examples is fixed through all the iterations and
the gradient is computed for the whole set, then we have batch learning or training, other-
wise we have pattern-based learning. Of course for on-line applications this is the procedure
adopted, and learning becomes adaptation.

B-spline neural networks have also been employed for PID autotuning. They have also a
three-layered structure, but the basis functions employed have a compact support, which
means that they are active only for specific sub-domains within the larger domain covered by
the inputs. A more detailed description of these networks is beyond the scope of this work
and the interested reader is conducted to (Brown and Harris, 1994) for more information. We
only mention that these networks have interesting properties for adaptation (performing on-
line learning in a neighbourhood around an operation point minimally affects the information
stored for the whole application domain) and can be interpreted as fuzzy systems.

Fuzzy systems were first introduced by Zadeh (Zadeh, 1965) as a means for handling and
processing vague, linguistic information (as humans do). It allows variables to be partial
members of a particular set and uses generalisation of conventional Boolean algebra to ma-
nipulate this information. Fuzzy information is represented by a set of fuzzy rules:

 IF ()1 1
ix is A AND ... AND ()i

n nx is A THEN ()jy is B (c) ij

The terms are linguistic variables which represent vague terms such as ‘small’, ‘medium’
or ‘large’, defined on the input and output variables. Each rule maps the antecedent, formed
by the intersection of the n univariate linguistic statements

i
kA

()i
k kx is A , to the consequent,

formed by a single univariate linguistic statement ()jy is B . Associated with is rule is a
variable () which describes the confidence in the particular rule being true. To implement ijc

 72

a fuzzy algorithm, the fuzzy sets need to be defined and the functions used to implement the
fuzzy operators chosen. To be used in the real world, a numerical crisp value needs to be
fuzzified, i.e, the degree of membership of each of the linguistic fuzzy sets needs to be calcu-
lated, and, on the other hand, a real-valued output is obtained by defuzzifying the fuzzy out-
put set, which is formed from the contributions of each fuzzy rule. There are different types
of fuzzy models. The most common are the Mamdani fuzzy model (Mamdani, 1975), whose
global structure was described above, and the Takagi-Sugeno model (Takagi and Sugeno,
1985), where the consequents are polynomials. There are various excellent introductory
books in fuzzy systems, such as (Driankov et.al., 1993).

Evolutionary algorithms are founded on Darwinian principles of evolution of species. Dif-
ferent algorithms follow under this umbrella, such as Genetic Algorithms (GAs), Evolution
Strategies, and Evolutionary Programming. Among these, GAs have been, since their intro-
duction by Goldberg (Goldberg, 1989), the mostly used and actually the only ones used for
PID autotuning. GAs are a powerful stochastic method for performing global search and op-
timisation. Instead of working with only one solution, which is evolved iteration-by-
iteration, they employ a population of possible solutions to the problem, and it is this popula-
tion that is evolved over different generations. Each particular individual is expressed in a
particular genetic code and is assigned a fitness value, which describes how well it performs
for the problem at hand. Evolution is performed by applying genetic operators for the cur-
rent population. These include selection (based on the fitness values assigned to the indi-
viduals within the current population, only some of them are selected for propagating its
genes for subsequent populations), crossover (which involves the exchange of genetic mate-
rial between two parents to create new off-springs) and mutation (performing random
changes to individual chromosomes). Once the new generation is obtained, the process goes
on iteratively for a specified number of generations.

Genetic algorithms are robust algorithms, which look for global optima, instead of local op-
tima, as gradient-based algorithms do. They have been found to cope well with noise,
discontinuities, and are very well-suited for performing multi-objective (MO) optimisation.
The interested reader can be found more detailed information in another IFAC Professional
Brief – Genetic Algorithms in Control Systems Engineering (Fleming and Purshouse, 2002),
and the references there within.

7.2. Neural Networks approaches to PID autotuning
The first (historically) approaches are due to (Swiniarski, 1990) and (Lightbody and Irwin,
1991). Both exploit the approximation capabilities of MLPs to approximate the mapping be-
tween samples of the step response to the PID (PD in the second case) gains. The first ap-
proach uses the open-loop output samples, while the second uses the closed-loop output un-
der PD control of a nominal plant. Both approaches suffered from several problems, the most
important being requiring a very large of samples (and hence neural network inputs) and be-
ing obviously dependent on the sampling time.

 73

Several authors have employed neural networks for adaptive PID control. As this is not the
theme of this work, this route will not be detailed. We shall just point out that they usually
two different neural networks: one, acting as a plant model (generally determined off-line),
and that is used on-line to back-propagate the error between the reference and the plant out-
put to the second neural network, which supplies the PID gains. This latter network is
adapted on-line in order to minimise the square of the error between the reference and the
output at each time instant. References to approaches in this route can be found in (Omatu et.
al., 1995 and 1999).

Ruano and co-workers (Ruano et. al., 1992) employed MLPs in a characteristic-based auto-
tuner. Here, they evaluated the process transfer function, in the real axis, in specific points.
These were used, as they can be obtained, on-line, using integral measures of the reference
step response, in the open loop case, or the step response and control signal, under PID con-
trol. This enabled to identify the plant, on-line, that belonged to a large domain of plant
transfer functions and for each transfer function type, a large range of its parameters. By
‘sampling’ this plants domain, and determining, for each example, the PID gains, according
to a user-defined criteria (in this paper, the ITAE criterion was used), a set of examples was
obtained for off-line training three MLPs, each one responsible for a PID parameter. After
these steps were realized off-line, the on-line operation consisted on applying a reference
step, determining the identification measures using the output, or the output and the control
signals, apply those to the MLPs, and finally the PID values to the controller. Figure 32 illus-
trates an example of this method.

Time (se conds)

I

II

III

IV

V

VI

VII

O
ut

p
u

t

Figure 32: results of PID autotuning

The plant was allowed to change between steps, once the transients related to the previous
step had vanished. The initial value of the PID parameters was computed from the open loop
step response. Further PID values were computed from the closed-loop step response. The
following sequence of changes to the plant was investigated:

() () () () ()2 2 2

1 1
1 1 1 0.5 1 1 0.5

s se e
s s s s s s

− −

→ → →
+ + + + + + 21

 74

At time 0 the loop was closed, and step I was applied to the reference input. The transfer
function of the plant was

1

se
s

−

+
.

When step II was applied, the plant had been changed to

()21

se
s

−

+
.

Since the PID parameters were tuned for the first plant, a considerable overshoot is present.
The plant remains unchanged when step III is applied and better results are obtained, since
the PID has retuned as a consequence of the observation of the results of the last step. In step
IV a plant with transfer function of

() ()2

1
1 0.5 1s s+ +

is assumed. The response is now typically overdamped. The controller retunes and a faster
response is now obtained in step V. In step VI the plant had changed to

() ()2 2

1
1 0.5 1s s+ +

,

and an oscillatory response is obtained. The controller is again retuned for step VII, and
again a better response was achieved.

This approach has been subsequently refined, in order improve its performance as a result of
on-line operation. In the previous approach, the neural networks were only trained off-line,
their weights remaining fixed subsequently. In (Ruano and Azevedo, 1999) an additional
neural network (the criterion network) was incorporated, to capture the mapping between the
identification measures and the PID parameters to the performance criterion, the ITAE. As
this criterion can be computed on-line, this neural network can be adapted on-line, therefore
improving its knowledge about the system as a result of on-line operation. This enables to
adapt the original neural networks – PID networks (responsible for delivering the parameters
to the PID controllers) - using the optimal PID values resulting from an on-line optimisation,
using the criterion network to supply estimates of the ITAE criterion as function of the PID
parameters. In this approach, due to their useful properties for on-line adaptation, B-spline
networks are used.

Figure 33 illustrates the performance of the auto-tuner, when the plant time delay (here a
FOPDT plant is considered) changes between 1.0 . The
transitions occur at every 10

1.05 1.1 1.05 1.0→ → → → →

PID ITAEλ
0.05PIDλ = 0.2ITAEλ =

th reference step. The purple symbols indicate the case where the
learning rate employed for the PID network () and the ITAE network () were 0.02
and 0.5, respectively, and the green symbols the case where and .

λ

 75

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
1 . 1

1 . 2

1 . 3

1 . 4

1 . 5

1 . 6

1 . 7

ite ra tio n s

IT
A

E

Figure 33: On-line performance of the PID autotuner

It can be seen that the ITAE is converging to its optimal value, indicated by the three solid
lines (each one for each plant) in the figure.

7.3. Fuzzy Logic approaches to PID autotuning
There are a significant number of contributions related with fuzzy PI or PID-like controllers,
which will not be mentioned here. As in the neural network approaches, most of the applica-
tions focus in adaptive PID control. The interested reader can consult, for instance, the works
of (Zhao et al, 1993), (Pfeiffer and Isermann, 1994), (Visioli, 1999), (Visioli, 2001), the
LabVIEW PID Control Toolset User Manual and a commercial controller, Honeywell UDC
6300, incorporating fuzzy logic.

Hyeong-Pyo Hong et. al. (1992) proposed a scheme where some characteristics of the step
response (first-peak, ratio of settling time, ratio of time constant and ratio of the first peak)
were identified and converted into linguistic values. Using a set of six fuzzy rules, the fuzzy
inference engine computes fuzzy values, which, defuzzified, are used as adjusting (multiply-
ing) factors for the current PID parameters.

A similar scheme is presented in (Iwasaki et. al., 1993). Again, characteristics of the refer-
ence step response (overshoot, time duration of the overshoot, ratio between the integral pa-
rameter and the rise time, saturation time) are fuzzified and used as an input to a fuzzy sys-
tem which outputs the PID parameters. The main difference is that, previously, the process is
classified according to the ratio of the delay time to the time constant (a FOPDT model is as-
sumed) in three different classes: lag, middle and dead-time plant, and for each case a spe-
cific fuzzy rule set is used.

An example of a neural-fuzzy approach to PID supervision is described in (Henriques et al,
1999). Here they address the problem of the PID control of a solar power plant. One charac-

 76

http://www.ni.com/pdf/manuals/322192a.pdf
http://catalog.sensing.honeywell.com/datasheet.asp?FAM=controllers&PN=UDC6300
http://catalog.sensing.honeywell.com/datasheet.asp?FAM=controllers&PN=UDC6300

teristic of this problem is that the operating point varies throughout the day, causing changes
in the plant dynamics which can not obviously be controlled. Different PID controllers were
designed for different operating points, based on neural network plant models. Based on
measured data related with the solar radiation and the reference temperature, a fuzzy super-
visor selects, among the available controllers, the one which achieves the maximum output
value, among the rules that have been fired simultaneously.

7.4. Genetic approaches to PID autotuning
Being genetic algorithms powerful optimisation methods, it is not surprising that they have
been applied for PID tuning. The first known (by the authors) approach to PID autotuning is
due to (Jones and Oliveira, 1995). Assuming that the process is modelled by an ARMA
process, they use first a genetic algorithm to estimate the model parameters based on the
closed-loop step response. Then they use this model to determine, again using genetic algo-
rithms, the PID gains that minimise a cost function such as ISE, IAE or ITAE. The same au-
thors extended this work to use co-evolutionary design in (Jones and Oliveira, 2000). Differ-
ent authors have used genetic algorithms for PID tuning, the major problem being to auto-
mate the techniques for on-line operation.

As mentioned before, genetic algorithms are well suited for performing multi-objective op-
timisation. This approach was introduced in (Lima and Ruano, 2000) for PID autotuning,
where they compared genetic algorithms with standard optimizers for the simultaneous op-
timisation of criteria related with reference tracking and disturbance rejection. This scheme
is being extended to accommodate additional criteria, and integrated in the learning scheme
proposed in (Ruano and Azevedo, 1999). As an example of this technique, figure 34 illus-
trates an example of a closed loop step response of a SOPTD plant, where the PID tuning
was obtained from a multi-objective genetic optimisation, considering criteria such as the
ITAE, overshoot, rise-time, control peak value, and additional criteria related with noise re-
jection.

Figure 34: a step response obtained with MOGA PID autotuner

 77

8. Selecting an autotuner
How the concepts introduced can be joined to form
a modus operandi

Selecting an autotuner is never easy and the role of experience is so important that the
knowledge gathered from any work like this can only serve as a starting point. A ‘way of
thinking’ for this selection process can be obtained by recalling the numerous ‘selection ori-
ented’ statements made throughout the volume, but we think it is useful to complete this
knowledge with some final guidelines. Assuming that the problem is to choose one or more
autotuners to be employed in a sufficiently well identified application or type of applications
(a quite realistic scenario), experience recommends to proceed more or less as follows.

• Identify the characteristics of the control problem(s) involved in the application in the
terms introduced here (tight control or not, dominance of tracking or rejection, degree of
nonlinearity, and so on). In particular, identify loops that require gain or parameter
scheduling, because performing several (auto)tuning operations in different conditions
is one of the most efficient ways for selecting the scheduling characteristics.

• Find out the really critical ones, taking into account also past process experience. Con-
centrate efforts on these, since for the others the choice of the autotuner will not be cru-
cial. This means that for non critical loops regulators can be chosen in any other way
and the autotuner they encompass (if any) can be used without worrying particularly of
its characteristics.

• Identify who will use the autotuners for the critical loops, which provides information
on what level of knowledge the autotuners to be chosen can or cannot require on the
part of the user.

• At this point all the information is available for choosing the best autotuning policies for
all the critical loops with the guidelines provided along this volume, plenty of product
information and the consciousness required for interpreting it.

• If this choice appears to call for adopting too many different types of product, figure out
the cost of system complexity versus performance and flexibility. This means pondering
whether adopting the same product for two different problems (one more suited for it
than the other) is likely to produce so big a performance loss to make the added com-
plexity of two products acceptable. In these considerations, be extremely careful in con-
sidering compatibility among products, and preferably make sure they all respect a well
established communication standard. This is very important because using several auto-
tuners in an integrated process environment almost always requires them to communi-
cate somehow.

• In extremely complex cases, consider that nowadays selecting an autotuning policy does
not always mean selecting a product. There are several SCADA environments providing
‘off-line tuning’, i.e. capable of making an experiment on the process and then compute
the PID parameters in the computer running the SCADA with plenty of different meth-

 78

ods. Parameters can then be downloaded to the regulator if the communication channel
allows to do so, otherwise input manually.

• In even more complex cases, consider implementing a set of autotuning policies tailored
for the application(s) at hand in a SCADA environment with user programming fea-
tures. This can be done only with a deep knowledge of autotuning (much deeper than
that achievable from this volume) but in some (few) cases it is the only realistic alterna-
tive.

9. Conclusions
The goal of this work is to help control professionals to select a PID autotuner effectively.
We have decided to pursue this goal by inducing consciousness on autotuners’ theory of op-
eration rather than by presenting a large number of products ‘flatly’. As a consequence, this
volume does not lead to a selection table but to a set of concepts that, once mastered, allows
to evaluate how much a product fits an application.

We have proposed a classification of autotuners that is slightly different from the one most
widely adopted in the academic literature. This must not be taken as a criticism to that classi-
fication, however. Our point is that the proposed one reflects more precisely the operational
aspects of autotuning, being based on the three questions (a) what type of process informa-
tion it uses? (b) how is the desired behaviour of the control system specified? (c) how does it
act for achieving its objectives? As such, we think that this classification may be less suited
for methodological discussions but is more useful for selecting a product.

The monograph has devoted a significant space to the review of PID control principles. This
has been done essentially for less experienced readers. We did not intend to provide a com-
plete treatment of PID control, rather to recall the most relevant facts with a notation consis-
tent with the rest of the work. The same rationale is behind the section devoted to tuning
methods, with the difference that mastering these is very important (not to say crucial) for
selecting an autotuner properly.

Some industrial products have been presented to illustrate how the concept introduced for
classifying and selecting autotuners reflect in the real world. Some samples of the current re-
search have also been given based on the authors’ experience.

We sincerely hope that our intent has been successful.

 79

References
Åström, K.J. and T. Hägglund (1984). Automatic Tuning of Simple Regulators with Specifi-
cations on Phase and Amplitude Margins. Automatica, 20, pp. 645-651.

Åström, K.J. and T. Hägglund (1995). PID Controllers: Theory, Design and Tuning – Sec-
ond Edition. Instrument Society of America.

Åström and Hägglund (2000). The Future of PID Control. Proc. IFAC Workshop on Digital
Control - Past, Present and Future of PID Control (PID 00), Terrassa (E).

Åström, K.J., C.C. Hang, P. Persson and W.K. Ho (1992). Towards Intelligent PID Control.
Automatica, 28 (1), pp. 1-9.

Åström, K.J., T. Hägglund, C.C. Hang and W.K. Ho (1993). Automatic Tuning and Adapta-
tion for PID Controllers: a Survey. Control Engineering Practice, 1 (4), pp. 699-714.

Bialkowski, W.L. (2000). Control of the Pulp and Paper Making Process. In S. Levine
(Ed.), “Control System Applications”, CRC Press, pp. 43-66.

Bristol, E.H. (1986). The EXACT Pattern Recognition Adaptive Controller, a User-oriented
Commercial Success. In Narendra (Ed.), “Adaptive and Learning Systems”, Plenum Press,
pp. 149-163.

Brown, M. and C. Harris (1994) Neurofuzzy Adaptive Modelling and Control. Prentice-Hall.

Control Engineering (May 1998). Single-Loop Controllers Dominate Marketplace.

Cox, C.S., W.J.B. Arden and A.F. Doonan (1994). CAD Software Facilitates Tuning of Tra-
ditional & Predictive Control Strategies. Proc. ISA/94-Advances in Instrumentation and
Control, 49 (2), pp. 241-250, Anaheim, CA.

Cox, C.S., P.R. Daniel and A. Lowdon (1997). QUICKTUNE: A Reliable Automatic Strat-
egy for Determining PI and pPI Controller Parameters Using a FOPDT Model. Control Eng.
Practice, 5 (10), pp 1463-1472.

Dahlin, E.G. (1968). Designing and Tuning Digital Controllers. Instrumentation and Control
Systems, 41 (6), pp. 77-81.

Doyle, J.C., B.A. Francis and A.R. Tannenbaum (1992). Feedback Control Theory. MacMil-
lan.

Driankov, D., H. Hellendoorn and M. Reinfrank (1993). An Introduction to Fuzzy Control.
Springer Verlag.

EnTechTM (1994). Competency in Process Control – Industry Guidelines, version 1.0.

Fleming, P.J. and R.C. Purshouse (2002). Genetic Algorithms in Control Systems Engineer-
ing. IFAC Professional Brief.

 80

Goodwin, G.C., S.F. Graebe and M.E. Salgado (2001). Control System Design. Prentice-
Hall.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley.

Haalman, A. (1965). Adjusting Controllers for a Deadtime Process. Control Engineering,
July, pp. 71-73.

Haykin, S. (1999). Neural Networks: a Comprehensive Foundation - 2nd edition. Prentice-
Hall.

Henriques, J., A. Cardoso and A. Dourado (1999). Supervision and C-Means Clustering of
PID Controllers for a Solar Power Plant. Int. Journal of Approximate Reasoning, 22, pp. 73-
91.

Hong H-P, S-J Park, S-J Han, K-Y Cho, Y-C Lim, J-K Park and T-G Kim (1992). A Design
of Autotuning PID Controller using Fuzzy Logic. 1992 Int. Conf. on Industrial Electronics,
Control, Instrumentation and Automation, pp. 971-976.

Isermann, R., K.H. Lachman and D. Matko (1992). Adaptive Control Systems. Prentice-Hall.

Iwasaki, T., A. Morita and H. Maruyama (1993). Fuzzy Autotuning with Model Classifica-
tion. Japanase Journal of Fuzzy Theory and Systems, 5 (3), pp. 435-446.

Jones, A.H. and P.B. Oliveira (1995). Genetic Auto-Tuning of PID Controllers. Galesia 95,
13, pp. 141-145.

Jones, A.H. and P.B. Oliveira (2000). Co-Evolutionary Design of PID Control Structures.
Proc. IFAC Workshop on Digital Control - Past, Present and Future of PID Control (PID
00), Terrassa (E), pp. 205-213.

Kessler, C. (1958a). Das Symmetrische Optimum, Teil I (in German). Regelungstechnik, 6
(11), pp. 395-400.

Kessler, C. (1958b). Das Symmetrische Optimum, Teil II (in German). Regelungstechnik, 6
(12), pp. 432-436.

Leva, A. (1993). PID Autotuning Algorithm Based on Relay Feedback. IEE Proceedings-D,
140 (5), pp. 328-338.

Leva, A. and A.M. Colombo (1999). Method for Optimising the Set-Point Weights in ISA-
PID Autotuners. IEE Proceedings - Control Theory and Applications, 146 (2), pp. 37-146.

Leva, A. and A.M. Colombo (2000). Estimating Model Mismatch Overbounds for the Robust
Autotuning of Industrial Regulators. Automatica , 36, pp. 1855-1861.

 81

Leva, A. and A.M. Colombo (2001a). Implementation of a Robust PID Autotuner in a Con-
trol Design Environment. Transactions of the Institute of Measurement and Control, 1, pp. 1-
20.

Leva, A. and A.M. Colombo (2001b). IMC-based Synthesis of the Feedback Block of ISA-
PID Regulators. Proc. ECC 2001, Porto (P).

Lima, J.M. and A.E Ruano (2000). Neuro-Genetic PID Autotuning: Time Invariant Case,
IMACS Journal of Mathematics and Computers in Simulation, 51, pp. 287-300

Lightboby, G. and G. Irwin (1991). Neural Networks for Nonlinear Adaptive Control. Proc.
1st IFAC Conference on Algorithms and Architectures for Real-Time Systems.

Mamdani, E. H. and S. Assilian (1975). An Experiment in Linguistic Synthesis with a Fuzzy
Logic Controller. Int. J. of Man-Machine Studies, pp. 1-13.

Morari, M. and E. Zafiriou (1989). Robust Process Control. Prentice-Hall.

Nishikawa, Y. Sannomiya, N. Ohta, T. and Tanaka H. (1984). A Method for Auto-tuning of
PID Control Parameters, Automatica, 20 (3), pp. 321-32.

Omatu, S., M. Khalid and R. Yusof (1995). Neuro-Control and their Applications. Springer-
Verlag.

Omatu, S., T. Fujinaka, Y. Kishida and M. Yoshioka (1999). Self-Tuning Neuro-PID for
SIMO systems, Proc. European Control Conference (in CD-Rom).

Pfeiffer, B.M and R. Isermann (1994). Self Tuning of Classical Controllers with Fuzzy
Logic. Mathematics and Computers in Simulation, 37, pp. 101-110.

Príncipe J., N. Euliano and W. Lefebvre (2000). Neural and Adaptive Systems: Fundamen-
tals through Simulations. John Wiley & Sons.

Rohrs, C.E., J.L. Melsa and D.G. Schultz (1993). Linear Control Systems. McGraw-Hill.

Ruano, A.E., P.J. Fleming and D.I. Jones (1992). A Connectionist Approach to PID Autotun-
ing, IEE Proceedings-D, 139 (3), pp. 279-285.

Ruano, A. E. and A.B Azevedo, (1999) B-Splines Neural Networks Assisted PID Autotuning.
International Journal of Adaptive Control & Signal Processing, 13 (4), pp. 291-307.

Sanchez–Pena, R.S. and M. Sznaier (1998). Robust Systems: Theory and Applications. John
Wiley & Sons.

Scattolini; R. and N. Schiavoni (1995). Regolatori PID e Metodi Classici di Taratura (in
Italian). Proc. ANIPLA Workshop on Advanced PID Regulators for Industrial Processes,
Milano (I).

 82

Smith, O.J.M. (1957). Close Control of Loops with Dead Time, Chemical Engineering Pro-
gress, 53, pp. 217-219.

Swiniarski, R. (1990). Novel Neural Network based Self-Tuning PID Controller which uses
Pattern Recognition Technique.Proc. IEEE Automatic Control Conference, 3, pp. 3023-
3024.

Takagi, T. and M. Sugeno (1985). Fuzzy Identification of Systems and its Applications to
Modelling and Control, IEEE Transactions on Systems, Man & Cybernetics, 15 (1), pp. 116-
132

Van Doren, V.J. (1997). PC-based Control Package Includes Everything, Control Engineer-
ing, November 1997.

Visioli, A. (1999). Fuzzy Logic Based Set-point Weighting for PID Controllers. IEEE Trans-
actions on Systems Man & Cybernetics, Part A, 29, pp.587-592.

Visioli, A. (2001). Tuning of PID Controllers with Fuzzy Logic. IEE Proceedings-D, 148 (1),
pp. 1-8.

Zadeh, L. A. (1965). Fuzzy Sets. Inform. Control, 8, pp. 338-353.

Ziegler, J.G. and N.B. Nichols (1942). Optimum Settings for Automatic Controllers. Trans.
ASME, 64, pp. 759-768.

Zhao, Z., M. Tomizuka and S. Isaka (1993). Fuzzy Gain Scheduling of PID Controllers.
IEEE Transactions on Systems Man & Cybernetics, 23 (5), pp. 1392-1398.

 83

About the authors

Alberto Leva was born in 1964 in Milano, Italy. In 1989 he received the
MSc (Laurea) Degree in Electrical Engineering from Politecnico di Mi-
lano, Italy. In 1991 he joined the Department of Electronics and Informa-
tion of the Faculty of Engineering at Politecnico di Milano, where in 1997
he became Assistant Professor of Automatic Control. His main research
interests are process modelling and simulation (especially of power
plants), automatic tuning of industrial regulators (with particular emphasis
on application-oriented issues) and the development of innovative tools for

education in Automatic Control. He serves as reviewer for several international journals in-
cluding Automatica, Control Engineering Practice, IEE Proceedings - Control Theory and
Applications, IEEE Transactions on Education, Journal of Process Control, Simulation, and
for various international conferences.

Chris Cox was born in 1939 in Kingston-on-Thames, England. His sub-
sequent life and education was mainly in the North East of England. He
received a BSc(Hons) Degree in Electrical and Electronic Engineering in
1963 from the University of Durham and a MSc in Control Engineering
from the University of Newcastle in 1996. He is presently Professor of
Control Engineering at the University of Sunderland. He is a Chartered
Engineer, Member of the IEE and Fellow of the Institute of Measurement
of Control. His main research interests include tuning of traditional and
predictive control, system identification and intelligent instrumentation
with particular emphasis on chemical dosing philosophies at clean and

dirty water treatment works. He also has an interest in the development of tools for the edu-
cation of undergraduate students. He has acted as an editor for a number of special features
and his reviewer experience has been very diverse including journals such as the IEE Pro-
ceedings-Control Theory and Applications, Simulation, Industrial and Engineering Chemis-
try Research and International Journal of Condition Monitoring and Diagnostic Engineering
Management.

Antonio Ruano was born in 1959 in Espinho, Portugal. He received the
First Degree in Electronic and Telecommunications Engineering from the
University of Aveiro, Portugal, in 1982, the MSc in Electrothecnic Engi-
neering from the University of Coimbra, Portugal, in 1989, and the PhD
degree in Electronic Engineering from the University of Wales in 1992. In
1992 he joined the Department of Electronic Engineering and Computing
of the Faculty of Sciences & Technology of the University of Algarve,
where in 1996 he become Associate Professor of Automatic Control. His

main research interests are neural control (and particularly its applications to PID autotun-
ing), environmental control and parallel processing techniques applied to real-time control.
He is the Coordinator of the Centre for Intelligent Systems and has over 100 research publi-
cations. He is Associate Editor for Automatica, he is a member of the Editorial Board of In-
ternational Journal of Systems Science, and serves as reviewer for other international jour-
nals and conferences.

 84

	Abstract
	Foreword
	Introduction�The basic concepts of (PID) autotuning
	How autotuners work and how they can be broadly classified
	The way process data is obtained and treated
	The way specifications are accepted or produced
	The tuning objectives
	The role of the regulator in the overall control system

	The way parameters are computed

	Where and why PID autotuning is useful
	The importance of tuning PID loops correctly
	The importance of having standardised tuning policies
	The process knowledge that can be gathered�from the use of autotuning

	The basics of PID control�Definitions, performance features and design fundamentals
	Introduction
	Controller Modes
	Proportional Mode
	Integral Mode
	Derivative Mode

	Control performance assessment in the time domain
	Control performance assessment in the frequency�domain
	Modern design issues and the accommodation of�plant uncertainty
	The block diagram and some important transfer functions
	Stability definitions
	Frequency domain design definitions for SISO systems�with plant uncertainty
	Nominal performance
	Robust stability
	Robust performance

	Concluding remarks on stability, performance�and robustness assessment
	Realistic PID Structures
	Antiwindup
	Controller properness
	Set point weighting in the P and D modes
	The ISA PID

	Two widely used extensions of the PID controller
	The Smith Predictor
	The Predictive PI (pPI)

	The basics of PID tuning�Obtaining simple process descriptions from data�and computing the PID parameters
	The extreme basics of data-based process description
	Model based process description
	First-order models
	Second-order models
	Models for integrating processes
	More complex models

	Characteristic based process description
	Time domain characteristics
	Frequency domain characteristics

	Most common approaches to PID synthesis
	Model based synthesis
	The Haalman method
	The Symmetric Optimum (SO) method
	The Dahlin method or ?-tuning
	The ‘kappa-tau’ \(or ‘KT’\) method
	The Internal Model Control (IMC) method
	Optimisation methods

	Characteristics based synthesis
	The Ziegler-Nichols methods
	Relay-based methods

	Rule based synthesis

	Choosing the controller structure

	The typical autotuning process�Automating the steps of tuning methods
	Obtaining the process behaviour description�automatically
	The needs: steady-state and control-relevant dynamics�determination
	Improving the accuracy in obtaining the process description
	On-line outlier removal
	Filtering
	Detrending

	Accepting (and checking) user specifications
	Autotuners with no specs
	Autotuners with lexical (word) specs
	Autotuners with numeric specs

	Computing and validating the regulator parameters
	Criteria for checking the tuning results
	Criteria for checking the ‘aspect’ of the obtaine

	Examples of industrial autotuners�Applying the obtained knowledge to evaluate a product
	Controllers with ‘built-in’ tuning capability
	The Foxboro EXACT
	The Honeywell AccuTune
	The Yokogawa SLPC
	The ABB ECA 600
	The OMRON E5AK/E5EK
	The National Instruments Autotuning PID
	Additional Controller Information

	Independent Software Tools

	Some samples of the current research�How advanced autotuning concepts are put into operation
	A relay autotuner exploring the process Nyquist curve
	A robust autotuner based on the IMC and on optimisation
	The MasterTune CAD Software
	
	PI QuickTune
	Predictive PI (pPI)
	Setting the relay characteristics
	AutoTune (PI strategy)
	Evaluation

	Soft-Computing methods for PID Autotuning�A novel alternative and a very promising research field
	What is Soft-Computing?
	Neural Networks approaches to PID autotuning
	Fuzzy Logic approaches to PID autotuning
	Genetic approaches to PID autotuning

	Selecting an autotuner�How the concepts introduced can be joined to form�a modus operandi
	Conclusions
	References
	About the authors

