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Abstract 
 
 
 
Sensor fusion is a method of integrating signals from multiple sources. It allows 
extracting information from several different sources to integrate them into single 
signal or information. In many cases sources of information are sensors or other 
devices that allow for perception or measurement of changing environment. 
Information received from multiple-sensors is processed using ” sensor fusion„  or 
” data fusion„  algorithms. These algorithms can be classified into three different 
groups. First, fusion based on probabilistic models, second, fusion based on least-
squares techniques and third, intelligent fusion. The probabilistic model methods 
are Bayesian reasoning, evidence theory, robust statistics, recursive operators. The 
least-squares techniques are Kalman filtering, optimal theory, regularization and 
uncertainty ellipsoids. The intelligent fusion methods are fuzzy logic, neural 
networks and genetic algorithms. This paper will present three different methods 
of intelligent information fusion for different engineering applications. Chapter 2 
is based on Sasiadek and Wang (2001) paper and presents an application of 
adaptive Kalman filtering to the problem of information fusion for guidance, 
navigation, and control. Chapter 3 is based on Sasiadek and Hartana (2000) and 
Chapter 4 on Sasiadek and Khe (2001) paper. 
 
 
1. Introduction 
 
The data/sensor problems and related methods are used in conjunction to many 
engineering applications. For example, guidance, navigation, and control of 
vehicles require large number of information from different sources. This 
information often is similar and has to be integrated into one meaningful signal or 

 



  

information that can be used in control systems. In this paper the sensor/data 
fusion will be shown for three different cases. In all three cases the Kalman Filter 
method is used to integrate signals/information received from multiple-sensor 
sources. Also, in all three cases the modification of Kalman Filter method is 
introduced to improve performance. This modification is based on Fuzzy Logic 
System (FLS). In that sense, the integration method becomes an intelligent 
integration, and is applicable to broader number of industrial cases. The chapter 2 
is presenting an integration of data/sensor signals received from the Global 
Positioning System (GPS) and Inertial Navigation System (INS). The integration 
allows for better and more accurate positioning. 
Chapter 3 presents the navigation of an autonomous robot based on sensor/data 
fusion method for signals received from sonar and odometry sensors. The fusion 
process allows for more efficient navigation and obstacle avoidance. In both cases 
described in chapter 2 and 3 the Kalman Filter method is backed up by the Fuzzy 
Logic System (FLS). 
Finally, chapter 4 is presenting an attempt to design integration method based 
fully on FLS. Results and conclusions are shown separately for those three 
different cases. 
 
 
 
 
2.  Fuzzy Adaptive Kalman Filtering for INS/GPS Data Fusion         
     and Accurate Positioning   
 
2.1 Introduction  
 
This chapter presents the method of sensor fusion based on the Adaptive Fuzzy 
Kalman Filtering. This method has been applied to fuse position signals from the 
Global Positioning System (GPS) and Inertial Navigation System (INS) for the 
autonomous mobile vehicles. The presented method has been validated in 3-D 
environment and is of particular importance for guidance, navigation, and control 
of flying vehicles. The Extended Kalman Filter (EKF) and the noise characteristic 
have been modified using the Fuzzy Logic Adaptive System and compared with 
the performance of regular EKF.  It has been demonstrated that the Fuzzy 
Adaptive Kalman Filter gives better results (more accurate) than the EKF 

 
2.2  Sensor Fusion 
 
When navigating and guiding an autonomous vehicle, the position and velocity of 
the vehicle must be determined. The Global Positioning System (GPS) is a 
satellite-based navigation system that provides a user with the proper equipment 
access to useful and accurate positioning information anywhere on the globe (see 
Brown and Hwang, 1992). However, several errors are associated with the GPS 



  

measurement. It has superior long-term error performance, but poor short-term 
accuracy. For many vehicle navigation systems, GPS is insufficient as a stand-
alone position system. The integration of GPS and Inertial Navigation System 
(INS) is ideal for vehicle navigation systems. In generally, the short-term 
accuracy of INS is good; the long-term accuracy is poor. The disadvantages of 
GPS/INS are ideally cancelled. If the signal of GPS is interrupted, the INS enables 
the navigation system to coast along until GPS signal is reestablished. The 
requirements for accuracy, availability and robustness are therefore achieved.  
 
Kalman filtering is a form of optimal estimation characterized by recursive 
evaluation, and an internal model of the dynamics of the system being estimated. 
The dynamic weighting of incoming evidence with ongoing expectation produces 
estimates of the state of the observed system (see Abidi and Gonzalez, 1992). An 
extended Kalman filter (EKF) can be used to fuse measurements from GPS and 
INS. In this EKF, the INS data are used as a reference trajectory, and GPS data 
are applied to update and estimate the error states of this trajectory. The Kalman 
filter requires that all the plant dynamics and noise processes are exactly known 
and the noise processes are zero mean white noise. If the theoretical behavior of a 
filter and its actual behavior do not agree, divergence problems will occur. There 
are two kinds of divergence: Apparent divergence and True divergence (Gelb, 
1992). In the apparent divergence, the actual estimate error covariance remains 
bounded, but it approaches a larger bound than does predicted error covariance. In 
true divergence, the actual estimation covariance eventually becomes infinite. The 
divergence due to modeling errors is critical in Kalman filter application. If, the 
Kalman filter is fed information that the process behaved one way, whereas, in 
fact, it behaves another way, the filter will try to continually fit a wrong process. 
When the measurement situation does not provide enough information to estimate 
all the state variables of the system, in other words, the computed estimation error 
matrix becomes unrealistically small, and the filter disregards the measurement, 
then the problem is particularly severe. Thus, in order to solve the divergence due 
to modeling errors, we can estimate unmodeled states, but it adds complexity to 
the filter and one can never be sure that all of the suspected unstable states are 
indeed model states (Lewis, 1986). Another possibility is to add process noise. It 
makes sure that the Kalman filter is driven by white noise, and prevents the filter 
from disregarding new measurement. In this paper, a fuzzy logic adaptive system 
(FLAS) is used to adjust the exponential weighting of a weighted EKF and 
prevent the Kalman filter from divergence. The fuzzy logic adaptive controller 
(FLAC) will continually adjust the noise strengths in the filter ŝ internal model, 
and tune the filter as well as possible.  The FLAC performance is evaluated by 
simulation of the fuzzy adaptive extended Kalman filtering scheme of Fig.1. 
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Fig.1. Fuzzy adaptive extended Kalman filter 
 
 
2.2.1  Weighted EKF 
 
Because the processes of both GPS and INS are nonlinear, a linearization is 
necessary. An extended Kalman filter is used to fuse the measurements from the 
GPS and INS. To prevent divergence by keeping the filter from discounting 
measurements for large k, the exponential data weighting (Lewis, 1986) is used.  
 
The models and implementation equations for the weighted extended Kalman 
filter are: 
 
Nonlinear dynamic model 
 

kkk kf wxx +=+ ),(1  (1)
),0(~ Qw Nk   

   
Nonlinear measurement model 
 

kkk kh vxz += ),(  (2)
),0(~ Rv Nk  

 
Let us set the model covariance matrices equal to 
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where, α≥1, and constant matrices Q and R. For α>1, as time k increases, the R 
and Q decrease, so that the most recent measurement is given higher weighting. If 
α=1, it is a regular EKF. 
 
By defining the weighted covariance 
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The Kalman gain can be computed: 
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The predicted state estimate is: 
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The predicted measurement is: 
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The linear approximation equations can be presented in form: 
 

−=∂
∂

≈Φ
kxx

k x
kxf

±

),(  (9)

 
The predicted estimate on the measurement can be computed: 
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Computing the a priori covariance matrix:  
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Re-writing (12) gives: 
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Computing the a posteriori covariance matrix gives: 
 

−−= αα
kkkk PHKIP )(  (14)

 
The initial condition is: 
 

00 PP =−α  
In equation (10), the term kk zz ±−  is called residuals or innovations. It reflects the 
degree to which the model fits the data. 
 
2.2.2  INS and GPS 
 
The inertial navigation system (INS) consists of a sensor package, which includes 
accelerometers and gyros to measure accelerations and angular rates. By using 
these signals as input, the attitude angle and three-dimensional vectors of velocity 
and position are computed (Jochen et al., 1994). The errors in the measurements 
of force made by the accelerometers and the errors in the measurement of angular 
change in orientation with respect to inertial space made by gyroscopes are two 
fundamental error sources, which affect the error behavior of an inertial system. 
The inertial system error response, related to position, velocity, and orientation is 
divergent with time due to noise input (Kayton and Fried, 1997). There are biases 
associated with the accelerometers and gyros. In order to correct the errors of INS, 
the GPS measurements are used to estimate the inertial system errors, subtract 
them from the INS outputs, and then obtain the corrected INS outputs. There is 
number of errors in GPS, such as ephemeris errors, propagation errors, selective 
availability, multi-path, and receiver noise, etc.  Using differential GPS (DGPS), 
most of the errors can be corrected, but the multi-path and receiver noise cannot 
be eliminated.  
 
2.3   Fuzzy Logic Adaptive System 
 
It is assumed that both, the process noise wk, and the measurement noise vk are 
zero-mean white sequences with known covariance Q and R in the Kalman filter. 
If the Kalman filter is based on a complete and perfectly tuned model, the 
residuals or innovations should be a zero-mean white noise process. If the 
residuals are not white noise, there is something wrong with the design and the 
filter is not performing optimally (Lewis, 1986). The Kalman filters will diverge 
or coverage to a large bound. In practice, it is difficult to know the exact values 
for Q and R. In order to reduce computation, we have to ignore some errors, but 
sometimes those unmodeled errors will become significant.  These are the 
instrument bias errors of INS. Sometimes the wk may be different than zero mean. 
In those cases, the residuals can be used to adapt the filter.  In fact, the residuals 
are the differences between actual measurements and best measurement 



  

predictions based on the filter ŝ internal model.  A well-tuned filter is that where 
the 95% of the autocorrelation function of innovation series should fall within the 
– 2σ boundary (Cooper and Dyrrant-White, 1994). If the filter diverges, the 
residuals will not be zero mean and become larger.  
There are very few papers on application of fuzzy logic to adapt the Kalman filter. 
Other authors (Abdelnour et al., 1993)), use fuzzy logic for on-line detection, and 
correction of divergence in a single state Kalman filter. There were three inputs 
and two outputs to fuzzy logic controller (FLC), and 24 rules were used. In our 
works (Sasiadek and Wang, 1999), the basic adaptive fuzzy logic controller has 
been introduced and designed. In this paper the new FLAC is proposed. The 
purpose of the fuzzy logic adaptive controller (FLAC) is to detect the bias of 
measurements and prevent divergence of the extended Kalman filter. It has been 
applied in three axes  East (x), North (y), and Altitude (z). The covariance of 
the residuals and mean values of residuals are used to decide the degree of 
divergence. The value of covariance relates to R. If the residual has zero mean, 
the equation for covariance of the residual is: 
 

RHPHP += − T
kkkz  (15)

 
The fuzzy adaptive Kalman filtering has been used for guidance and navigation of 
mobile robots, especially for 3-D environment. The navigation of flying robots 
requires fast, and accurate on-line control algorithms.  The ” regular„  Extended 
Kalman Filter requires high number of states for accurate navigation and 
positioning and is unable to monitor the parameters changing.  The FLAC 
requires smaller number of states for the same accuracy and therefore it would 
need less computational effort. Alternatively, the same number of states (as in 
” regular„  filter) would allow for more accurate navigation. 
 
2.3.1  Fuzzy adaptive Kalman filtering for parameter uncertainties 
 
Sometimes, uncertain or time varying parameters are considered to exist in the Q 
and R matrices. The fuzzy adaptive Kalman filtering is used to detect and then 
adapt the filter on-line. There are two groups of fuzzy controllers. In those two 
fuzzy controllers, the covariance of the residuals and the mean of residuals are 
used as the inputs to both controllers for all three fuzzy inference engines. The 
exponential weighting α for first group controller and the scales for second group 
controller of three axes are the outputs.  
 
The first group, which output is α, was used to detect the filter divergence and 
adapt the EKF.  Generally, when the covariance is becoming large, and mean 
value is moving away from zero, the Kalman filter is becoming unstable. In this 
case, a large α will be applied. A large α means that process noises are added. It 
can ensure that in the model all states are sufficiently excited by the process noise. 
When the covariance is extremely large, there are some problems with the GPS 



  

measurements, so the filter cannot depend on these measurements anymore, and a 
smaller α will be used. By selecting an appropriate, α, the fuzzy logic controller 
will adapt the Kalman filter optimally and try to keep the innovation sequence 
acting as zero-mean white noise. Some membership functions are shown at figure 
2, 3 and 4. 
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Fig.2. Covariance Membership Functions 
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Fig.3. Mean Value Membership Functions 
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Fig.4. α Membership Functions 
 
The fuzzy logic controller uses 9 rules, such as: 
If the covariance of residuals is large and the mean value is zero Then α is zero. 
If the covariance of residuals is zero and the mean value is  large Then α is 
small. 
 
The second group, which output is scale, was used to detect the change of 
measurement noise covariance R. From equation (15), the R is related to the 
covariance of residual, the larger the covariance of residual, the more the 
measurement noise. When the fuzzy logic controller finds that the covariance of 
residual is larger than that expected, it applies a large scale to adjust the α. A 
sample rule is: 
 



  

If the covariance of residuals is small and the mean values is small then the scale 
is large. 

 
Table 1 and 2 are the rule table for those two groups of fuzzy controllers. 
 
 
 
 
 

 
 
 

Table. 1.  Rule Table for α 
 

 
α 

Mean Value 

 Z S 
 

L 

 Z Z S S 

S S L 
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NS 

 
         S --- Small;     L --- Large;                
         Z --- Zero;      NS --- Negative Small          

 
 

Table. 2  Rule Table for Scale 
 

 
Scale 

Mean Value 
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2.3.2  Fuzzy adaptive Kalman filtering for non-white process noise 
 
It is assumed that the process noise wk is white noise for Kalman filtering. But 
sometime the process noise could be correlated with itself, non-white. In this case, 
we can add a shaping filtering that manufactures colored noise wk with a given 
spectral density from white noise, but it will increase the state variables.  In some 
real-time situation, the computing time have a restriction for increasing the state 
variables. We can use a fuzzy adaptive Kalman filtering to adaptive the process 
noise rather than add more state variables. There are 9 rules and therefore, little 
computational time is needed. The membership functions for this fuzzy control 
are showed as figure 5.8, 5.9, and 5.10. 
 
The FLAC uses 9 rules, such as: 
 
If the covariance of residuals is large and the mean values are zero Then α is 
large. 
If the covariance of residuals is zero and the mean values are large Then α is 
zero. 
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Fig.5. Covariance Membership Functions 
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Fig.6. Mean Value Membership Functions 
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Fig.7. α Membership Functions 

 
 

Table. 3.  Rule Table for FLAS 
 

 
α 

Mean Value 

 Z S 
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 Z S Z 
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         S --- Small;          M --- Medium;     
         L --- Large;          Z --- Zero;                  
 
 
 
2.4   Simulation 
  
MATLAB codes developed by authors has been used to simulate and test the 
proposed method. 
 
The state variables used in simulation are: 
 

],,,,,,,[ tctczzyyxx kkkkkkk ∆∆= &&&&x  (16)
 
The states are position, and velocity errors of the INS East, North, Altitude, GPS 
range bias and range drift. 
 
2.4.1  Simulation experiment 1 
 



  

The first part of simulation uses the fuzzy adaptive Kalman filtering for parameter 
uncertainties. 
 
The designed standard deviation of GPS measurement R is 5 [m]. The designed 
standard deviations of Q for INS are 0.0012 meter, 0.0012 meter, and 0.0012 
meter for the East (x), North (y), and Altitude (z) respectively.  
 
The simulations (Table 4, 5 and 6 and Figure 8 and 9) show that after the filter is 
stabilized, the actual error covariance of fuzzy logic adaptive EKF almost agrees 
with the theory error covariance. In the Table 4, 5 and 6, the designed parameters 
are Q and R. The 5Q, 2R etc. mean that the real time parameters are 5 and 2 time 
as large as the designed Q and R. In figure 8, and 9, dashed lines are the 
theoretical covariance of EKF, and the solid lines are the covariance of fuzzy 
adaptive EKF. 
 

 
 
 

Table 4  Comparison of theoretical and actual error variance (X-axis) 
 

 
Q 

 
R 

 
Theory 

 
Actual 

5Q R 3.1711 3.3912 
5Q 2R 5.3293 5.3121 
3Q 2R 4.6896 4.8469 
5Q 4R 8.9612 8.3122 

 
 
 

Table 5  Comparison of theoretical and actual error variance (Y-axis) 
 

 
Q 

 
R 

 
Theory 

 
Actual 

5Q R 2.5540 2.7227 
5Q 2R 4.2877 4.1030 
3Q 2R 3.7694 4.0864 
5Q 4R 7.2002 7.7340 

 
 
 
 



  

 
 
 
Table 6  Comparison of theoretical and actual error variance (Z-axis) 
 

 
 

Q 
 

R 
 

Theory 
 

Actual 
5Q  R 0.8344 0.8072 
5Q 2R 1.3979 1.1796 
3Q 2R 1.2268 1.2989 
5Q 4R 2.3417 2.5005 

 
 
2.4.2  Simulation experiment 2 
 
In the second set of simulations, we simulate the inputs of non-white process 
noise. The covariance of GPS measurement R is 25 [m2]. It is assumed that the 
measurements of INS have some biases. In the first part of this simulation (Fig. 
5), the mean values of INS are 0.0014 meter, 0.00035 meter, and 0.0007 meter for 
the East (x), North (y), and Altitude (z) respectively. A white noise with a 
standard deviation of 3 meter is added to GPS measurements. The sample period 
is 1 second. The first row in Fig. 10 is the innovations of fuzzy adaptive EKF and 
EKF in East (x). The innovation of EKF had a large drift, and was stable at a high 
mean value. The fuzzy adaptive EKF clearly improved the performance of EKF, 
and the mean value was much smaller than that of EKF. Other figures present the 
corrected position (first column) and velocity (second column) errors. The 
corrected error is the current INS error minus estimated INS error. The dashed 
lines are the corrected errors of EKF, and the solid lines are the corrected errors of 
fuzzy adaptive EKF. The fuzzy adaptive EKF significantly reduced the corrected 
position and velocity errors. In the second part of this simulation (Fig. 11), the 
same measurements as in the first part of this simulation for INS were used. A 
white noise with a standard deviation of 2 meter from 0 s to 1000 s and 1500 s to 
2000s was applied to GPS measurements. From 1000 s to 1500 s, the standard 
deviation of 6 meter with mean value of 6 meter was added to GPS 
measurements. Although, the GPS measurement noises features were changed, the 
fuzzy adaptive EKF still worked well. Those simulations also showed that the 
corrected errors of EKF were proportional to the mean values of INS 
measurements. In other word, the more errors are not modeled, the worse the EKF 
performs. 
 
 
 



  

2.5   Summary 
 
In this chapter, a fuzzy adaptive extended Kalman filter has been developed to 
detect and prevent the EKF from divergence. By monitoring the innovations 
sequences, the FLAS can evaluate the performance of an EKF. If the filter does 
not perform well, it would apply an appropriate weighting factor α to improve the 
accuracy of an EKF. 
 
The FLAS can use lower order state-model without compromising accuracy 
significantly. Other words, for any given accuracy, the fuzzy adaptive Kalman 
filter may be able to use a lower order state model. The FLAS makes the 
necessary trade-off between accuracy and computational burden due to the 
increased dimension of the error state vector and associated matrices. When a 
designer lacks sufficient information to develop complete models or the 
parameters will slowly change with time, the fuzzy controller can be used to 
adjust the performance of EKF on-line, and it will remain sensitive to parameter 
variations by "remembering" most recent N data samples.  It can be used to 
navigate and guide autonomous vehicles or robots and achieved a relatively 
accurate performance. 
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Fig. 8.  Actual and Theory Covariance for 5Q and R 
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Figure 11. Simulation B 
 
 

 
 
 
 

3.  Sensor Fusion for dead-reckoning mobile robot navigation 
 

3.1 Introduction 
 
In positioning and localization problems, two or more different sensors are 
often used to obtain the best estimation data for control system. Extended 
Kalman Filter (EKF) is widely used to fuse those data to obtain one optimal 
result. One consideration when using EKF is the signal used during 
navigation is a white noise signals. This consideration is hardly found in 
real application. This paper presents the sensor fusion for dead-reckoning 
mobile robot navigation. Odometry and sonar signals are fused using 
Extended Kalman Filter (EKF) and Adaptive Fuzzy Logic System (AFLS). 
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The AFLS was used to adapt the gain and therefore prevent the Kalman 
filter divergence.  The fused signal is more accurate than any of the original 
signals considered separately. The enhanced, more accurate signal is used to 
guide and navigate the robot. 
 
3.2 Sensor Fusion 
 
For the navigation system, there are two basic position-estimation methods 
commonly applied, i.e. relative and absolute positioning, see Borenstein (1996), 
Shoval, et al. (1998), Jetto, et al. (1999), Jetto, et al. (1999), and Roumeliotis, et 
al. (1999). Relative positioning, which is sometimes called dead reckoning, is 
usually based on inertial sensors or odometry sensors. In this method, the 
calculated distance from initial position determines current position estimation. In 
an absolute positioning system, the positioning sensors interact with a dynamic 
environment, which can be navigation beacons, active or passive landmark, map 
matching, or satellite-based navigation signal, to find the position estimation.  
 
To solve the positioning problems, there are two types of sensors available: 
internal and external sensors, as explained by McKerrow (1991). Internal sensors 
measure physical variables on the vehicle itself. This self-containing characteristic 
means the measurement results of these sensors are almost always available to 
solve positioning problems. The examples of these sensors are accelerometer, 
odometry, gyroscopes, and compasses. External sensors measure relationships 
between the vehicle and its environment, which can be natural or artificial objects. 
The examples of external sensors are satellite signal receiver, sonar sensor, radars, 
and laser range finders. 
 
When the above sensors are implemented to solve positioning problems, both 
have advantages and disadvantages. For short periods, measurements using 
internal sensors are quite accurate. However, for long-term estimation, the 
measurements usually produce a drift. On the contrary, because it measures 
absolute quantity, external sensors do not produce the drift, however, the 
measurements from these sensors are usually not always available, Santini, et al. 
(1997). 
 
The common method used in navigation problem is to combine those sensors so 
that it will produce the best desirable output. The common combination method is 
by applying the Extended Kalman Filter (EKF), such as shown in the work by 
Jetto, et al., (1997, 1999), Tham, et al., (1999), Sasiadek and Wang (1999), 
Sasiadek and Hartana (2000). 
 
The most common combination of sensors used in positioning and localization 
problems si combination of odometry and sonar sensor. Odometry sensor is 
mounted on the robot ŝ driving wheels and register angular movements of the 
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wheels, which are then translated into linear movements. Beside the drawback 
that the translation introduces the error, see Sasiadek and Hartana (2000), this 
implementation makes the odometry signal always available. The sonar sensor, 
which measures absolute position of the robot, is used to update the position 
measured by odometer. 
 
Other errors can also occur in odometry sensors. One is systematic error. This 
error causes the bias in one direction of the movement of the vehicle. Borenstein 
and Feng (1996) presented their method to correct this error. The method is based 
on a benchmark experiment performed prior to regular operation of the vehicle. 
The experiment can find the systematic error and, subsequently, the error is 
applied to correct the control system parameters. If the systematic errors occur 
frequently, this method may not be sufficient. For example, if the vehicle uses 
elastic tires, the benchmarking process has to be performed each time the unequal 
diameter occurs. It is beneficial that the error correction is done in real time 
operation.  
 
It is widely known that poorly designed mathematical model for the EKF will lead 
to the divergence. Clearly, if the plant parameters are subject to perturbations and 
dynamics of the system are too complex to be characterized by an explicit 
mathematical model, an adaptive scheme is needed. Jetto, et al., (1999) used 
Fuzzy Logic Adapted Kalman Filter (FLAKF) to prevent the filter from 
divergence when fusing measurement from odometry and sonar sensors. In this 
method, the ratio of innovation and covariance of innovation is used as input to 
the fuzzy logic, and the output is used to weight the process noise covariance in 
EKF. Sasiadek and Wang (1999) used exponential data weighting to prevent the 
divergence. Mean value and covariance of innovation are used as the input of the 
Fuzzy Logic Adaptive Controller (FLAC). The output is then used to weight 
process noise and measurement noise covariance in EKF. This FLAC is 
implemented on the flying vehicle navigating in three-dimensional space. Both 
those methods have shown improvement in the estimation of the vehicle position 
in comparison with the EKF only. 
 
In this paper, the systematic error in odometry sensor is corrected during real-time 
operation of the vehicle by using measurements result from the sonar sensor. EKF 
is applied to fuse those two signals to find the best estimation of position. 
Adaptive Fuzzy Logic System (AFLS) is used to prevent the filter from 
divergence. The objective of this paper is to develop an efficient method for signal 
fusing to get accurate positioning. 
 
3.3   Mathematical Model 
 
The model of the vehicle used in the simulation is based on a differential-drive. In 
this model, the vehicle can be steered by differentiating the wheels angular 
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velocity. The kinematic model of this vehicle is described by the following 
equations, see Wang (1988): 
 

)(sin)()( ttvtx θ=&  (176) 
)(sin)()( ttvty θ=&  (17) 

)()( tt ωθ =&  (18) 
 
where, )(tv  and )(tω  are, respectively, the linear and angular velocities of the 
robot, and are expressed by: 
 

D
tt

tv lr

4
)()(

)(
ωω +

=  (19) 

D
d

tt
t lr

2
)()(

)(
ωω

ω
−

=  (20) 

 
where D  and d  are the wheel diameter and the distance between the odometry 
encoder respectively. 
 
If we denote the state variable of the vehicle as Tttytxt ])()()([)( θ=x , and the 
vehicle control input as Tttvt ])()([)( ω=u , the kinematic model in equations (176) 
-18) can be written in the form of stochastic differential equation as: 
 

)())(),(()( tttft wuxx +=&  (21) 
 
where )(tw  is a zero-mean Gaussian white noise with covariance matrix )(tQ , 
which represents the model inaccuracies. This time-equation is linearized and 
sampled in a small period kk ttT −= +1 .  Assuming that during this time interval, the 
linear and angular velocities are constant, and that the vehicle is following an arc 
path (see Wang (1988)), then, the equations for Extended Kalman Filter can be 
expressed by: 
 

kkkk uBxx +=−
+1  (22) 

k
T
kkkk QAPAP +=−

+1  (23) 
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where: 

T
kkkk yx ][ θ=x  (27) 
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and, 2
11 xQ σ= , 2

22 yQ σ= , and 2
33 zQ σ=  are diagonal elements of covariance matrix 

)(tQ  of )(tw  in Eq. (21). 
 
The measurement, in this case, will consist of the measurement from odometry 
sensor and sonar sensor. The size of the measurement vector depends on the 
number of active sonar sensor. In general, this vector can be expressed as (See 
Jetto et. al. (1999)): 
 

T
nkkkkkkk dddyx ][),( 21 Kθ=Πxy  

 (34) 
where nkd  is the measurement of sonar nth at time k. 
 
3.4  Adaptive Fuzzy Logic System 
 
In Kalman filter model, both process noise kw  and measurement noise kv  are 
assumed zero-mean white noise sequence with covariance kQ  and kR . If the 
model of EKF is tuned perfectly, the residual between actual and predicted 
measurement should be a zero-mean white noise process. 
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Often, we do not know all parameters of the model or we want to reduce the 
complexity of modeling. Therefore, in real application, the exact values of kQ  and 

kR  are not known. If the actual process and measurement noises are not a zero-
mean white noise, the residual in Kalman filter will also not be a white noise. If 
this is happened, the Kalman filter would diverge or at best converge to a large 
bound.  
 
Jetto, et al. (1999) used fuzzy logic adapted Kalman filter to prevent the filter 
from divergence. The fuzzy logic controller uses one input and one output. The 
ratio between innovation and covariance of innovation process is used as an input. 
The output is a constant, which is used to weight the process noise covariance. 
The controller uses five fuzzy rules, and it is implemented in a wheeled mobile 
robot equipped with odometry and sonar sensors. 
 
Sasiadek and Wang (1999) used fuzzy logic adapted controller (FLAC) to prevent 
the filter from divergence when fusing signals coming from INS and GPS on 
flying vehicle. Nine rules were used. There were two inputs, which are the mean 
value and covariance of innovation, and the output is a constant that is used to 
weight exponentially the model and measurement noise covariance. 
 
In the case of fusing signals that come from odometry and sonar sensors, 
sometime only odometry measurements are available. The innovation will be a 
white noise as long as the process and measurement noises are assumed as a white 
noise. However, when the sonar measurements become available, and combined 
with the odometry measurement, the innovation might be not a white noise 
anymore. This will cause the filter to diverge. 
 
When systematic error occurs in the vehicle, the process and measurement noise 
actually are not a gaussian white noise, which causes divergence in EKF. AFLS 
can be used to adapt the filter gain so that the divergence can be avoided. The 
adaptation process used in this paper is based on exponential data weighting 
(Lewis, 1986). The scheme of the adaptation process is shown in Fig. 12. 
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Fig. 12. Adaptive Fuzzy Logic System (AFLS) scheme 
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The membership function used in this AFLS is displayed in Fig. 13 - Fig.15. The 
AFLS uses nine rules, which are summarized in Table 1. 
 
 
3.4.1  Weighted EKF 
 
 
Using exponential data weighting as an adaptation process, the equation for the 
EKF will be different. For exponential data weighting, the weighted process and 
measurement noise covariance can be written as: 
 

)1(2 +−= k
k αRR  (35) 

)1(2 +−= k
k αQQ  (36) 

 
where 1≥α . Q  and R  are constant matrices of process and measurement noise 
covariance. For 1>α , as time k  increases,  kQ  and kR  will decrease, which 
means that the most recent measurement is given higher weighting.  
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Table 7. Rules table for AFLS 
 

Innovation process mean 
value α  
Zero Small Large 

Zero Small Zero Large 
Small Zero Large Medium 

Innovation 
process 
covariance Large Large Medium Zero 
 
If the weighted estimation covariance is defined as: 
 

k
kk

2αα −− = PP  (37) 
 
then  the EKF equations become: 
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k
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3.5  Experiments and Results 
 
 
Simulation experiments have been conducted to show the implementation of 
AFLS when fusing the signals that come from odometry and sonar sensor. 
Systematic error in odometry measurement, which comes from unequal in wheel ŝ 
diameter, is also considered. The vehicle is planned to follow sinus path in in-door 
environment. The map of the in-door environment along with the movement of 
the mobile vehicle that has systematic error is shown in Fig. 16. 
 
Three simulation experiments have been performed. The first experiment is to 
show the implementation of EKF in the mobile robot using odometry sensor, 
where the sensor has systematic error. The result of this experiment is shown in 
Fig.17. In this experiment, it shows that the implementation of EKF with only one 
measurement signal is available, cannot be used to correct the systematic error. 
The EKF in this case only filters the Gaussian white noise of the odometry 
measurement error. However, the systematic error is still present in the movement 
of the mobile vehicle. 
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Fig.16. Map of in-door environment 
 
The second experiment is to use the EKF to fuse measurement signals that come 
from odometry and sonar sensor without using AFLS. This experiment result is 
shown in Fig. 18. The present of sonar sensor, which measures the relation of the 
mobile vehicle and its environment, reduces the systematic error, and the mobile 
vehicle can follow the designed path. However, the movement of the mobile 
vehicle in this case is not smooth. The result of sonar measurement in this 
experiment is not used efficiently to improve the position estimation. 
 
The third experiment is to use AFLS to adapt the gain of EKF to prevent the filter 
from divergence. In this experiment, when the sonar measurement becomes 
available, the EKF uses this signal to improve its estimation. AFLS makes the 
position estimation smoother than without AFLS. The result of this experiment is 
shown in Fig.9. 
 
3.6  Summary 
 
In  this chapter, Extended Kalman Filter (EKF) has been used to estimate the 
position of the mobile vehicle. To prevent the filter from divergence, the 
innovation and covariance of innovation process are monitored by using Adaptive 
Fuzzy Logic System (AFLS). The result is an adaptation in the gain of EKF. 
 
Odometry and sonar sensors have been used to illustrate the method. From the 
simulation experiment, it shows that beside the improvement in the estimation of 
position, the method can also be used to correct the systematic error. Using this 
method, real-time operation of the vehicle can be reduced. 
 
 



 27 

0 1 2 3 4 5 6 7 8 9 10

-4

-3

-2

-1

0

1

2

3

Position of the vehicle

x Position (meter)

y 
Po

si
tio

n 
(m

et
er

)

 
Fig.17. Results of simulation experiment using EKF with only odometry measurement. 
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Fig. 18.  Simulation experiment result using EKF with odometry and sonar measurement 
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Fig.19.  Simulation experiment result using EKF with odometry and sonar measurement, adapted 
by AFLS 
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4.  Sensor Fusion based on Fuzzy Kalman Filter 
 
4.1  Introduction 
 
In this chapter, a fuzzy Kalman filter was presented, which is based on fuzzy logic 
theory and Kalman filtering. It is similar to Kalman filter when a linear system 
with Gaussian noise is considered. However, when non-Gaussian noise is 
introduced, it is shown that fuzzy Kalman filter is outperforming Kalman filter, 
while Kalman filter does not work well. It was demonstrated the performance of 
Kalman filter and fuzzy Kalman filter for position estimation application under 
different kinds of circumstances. The comparisons are made to draw conclusions. 
 
4.2.  Kalman Filter   
 
Experimental measurements are never perfect, even with sophisticated modern 
instruments. The problem of estimating the state of a stochastic dynamical system 
from noisy observations taken on the state is of central importance in engineering. 
Noise filtering is an important part of processing a real signal sequence. There are 
many kinds of filters could be used for estimation purpose, such as mean filter, 
median filter, Gaussian filter, and so on. In this article, we discuss the 
performances of Kalman filter and fuzzy Kalman filter.  
There are two basic processes that are modeled by the Kalman filter. The first 
process is a model describing how the error state vector changes in time. This 
model is the system dynamics model. The second model defines the relationship 
between the error state vector and any measurements processed by the filter, and it 
is the measurement model. Intuitively, the Kalman filter sorts out information and 
weights the relative contributions of the measurements and of the dynamic 
behavior of the state vector. The measurements and state vector are weighted by 
their respective covariance matrices.  

The Kalman filter estimates a process by using a form of feedback control: the 
filter estimates the process state at some time and then obtains feedback in the 
form of (noisy) measurements. As such, the equations for the Kalman filter fall 
into two groups: time update equations and measurement update equations. The 
time update equations are responsible for projecting forward (in time) the current 
state and error covariance estimates to obtain the a priori estimates for the next 
time step. The measurement update equations are responsible for the feedback 䀍 
i.e. for incorporating a new measurement into the a priori estimate to obtain an 
improved a posteriori estimate. 
It was assumed the random process to be estimated can be modeled in the form 
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1x x wk k k k+ = Φ +                                   (43) 

The observation (measurement) of the process is assumed to occur as discrete 
points in time in accordance with the linear relationship 
 
                 z H x vk k k k= +                                         (44) 

 
The covariance matrices for the wk and vk vectors are given by 

 
Q ,      

[w w ]
0,         

kT
k i

i k
E

i k
=

=  ≠
 (45) 

R ,      
[v v ]

0,         
kT

k i

i k
E

i k
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≠

 (46) 

[w v ] 0,   for all  and T
k iE k i=  (47) 

 
We also assume that we know the error covariance matrix associated with 

_

x k

∧
. 

That is, we define the estimation error to be  
_

e x xkk k

∧
− = −  (48) 

 
and, the associated error covariance matrix is  

 
_ _

P e e x x x x
T

T
k kk k i k kE E

∧ ∧
− − −

      = = − −        

 (49) 

 
It is clear that once the loop is entered, it can be continued ad infinitum. The 
pertinent equations and the sequence of computation step are shown pictorially in 
Fig. 20. 
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Enter prior estimate xk

−∧
and its error    covariance Pk

−  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 20.  Kalman Filter Recursive Computation Loop 
 
4.3  Fuzzy Logic Control 

 
Fuzzy logic control is a control method based on fuzzy logic. Just as fuzzy logic 
can be described simply as ” computing with words rather than numbers„ ; fuzzy 
logic control can be described simply by ” control with sentences rather than 
equations„ .  
The basic configuration of the fuzzy logic controller is shown in Fig. 21. 

Inputs u(t) 
 
Reference  

input   
r(t)             
 
 
 
 
                                                                   Outputs y(t) 
Fig. 21.  Fuzzy logic Controller Architecture 
 
1) Rule Base 

Specifically, the fuzzy rule-base comprises the following fuzzy If-Then rules: 
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1 1IF  is  and ... and  is , THEN  is l l l
n nx A x A y B  

where l
iA  and lB are fuzzy sets in Ui ⊂ R and V ⊂ R, respectively, and 

( )1 2x , ,..., T
nx x x U= ∈  and y V∈  are the input and output (linguistic) variables of 

the fuzzy system, respectively. 
2) Inference Mechanism 

The premises of all the rules are compared to the controller inputs to 
determine which rules apply to the current situation. The ” matching„  process 
involves determining the certainty that each rule applies. 

3) Fuzzification 
The fuzzification process is the act of obtaining a value of an input variable 
and finding the numeric values of the membership function(s) that are defined 
for that variable. 

4) Defuzzification 
Defuzzification operates on the implied fuzzy sets produced by the inference 
mechanism and combines their effects to provide the ” most certain„  controller 
output. 

Center of Gravity (COG) method 
( )

( )

i iicrisp

ii

b
u

µ

µ
=

∑ ∫
∑ ∫

 (50) 

where 
bi  −−center of the membership function of the consequent of rule (i) 

( )iµ∫ −−area under the membership function µ(i) 

Center Average method 
( )

( )

i

i

i premisecrisp i

premisei

b
u

µ

µ
=

∑
∑

 (51) 

 
 
4.4   Dynamic System Model 

 
In this chapter a dynamic system model is used which consists of a spacecraft 
accelerating with random bursts of gas from its reaction control system thrusters, 
the vector x might consist of position P and velocity V. The dynamic equations 
are 

 
2

1
1P P V a
2k k k kt t+ = + ∆ + ∆  (52) 

1V V ak k k t+ = + ∆  (53) 
 

The system equation is 
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2
1

1

1P P1  
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V 0  1 V
k k
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k k

t t
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+

 ∆ ∆      = +           ∆ 

 (54) 

 
where ak is the random, time-varying acceleration and ∆t is the time between 

step k and step k+1. Now suppose we can measure the position P. Then our 
measurement at time k can be denoted zk = Pk + vk, where vk is random 
measurement noise. 
We assume that the process noise wk is Gaussian noise with a covariance matrix 
Q. Further assume that the measurement noise vk is Gaussian noise with a 
covariance matrix R, and that it is not correlated with the process noise. 
The state transition matrix is: 

  
1
0 1k

t∆ 
=  

 
Φ

  
  

 (55) 

The measurement matrix is: 
Hk = [1  0] (56) 

Process noise matrix is: 
21

w 2k
t
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 ∆ =
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* process noise  (57) 

 
Measurement noise vk = measurement noise  
 (58) 
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 (59) 

2

R v v

    measurement noise

T
k k kE  =  

=
 (60) 

The initial parameters chosen for the simulation are: 

1) True position trajectory: xk = 10*sin(tk); 
2) Standard deviation of position measurement noise: 10 m; 
3) Standard deviation of acceleration process noise:  

0.5 m/s2; 
4) Total simulation time period: 100 sec.; 
5) Time step ∆t: 0.2 sec.; 
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4.5  Simulation Results 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Fig. 22  True Position Trajectory 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

Fig.23  Measured Position Trajectory 
 

 
 

 
 
 
 
 

 
 
Fig. 24 Estimated Position Trajectories 
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Fig. 24 Estimated Position 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Fig. 25   Innovation 
 
 
 
 
 
 

 
 
 
 

 
 
Fig. 26  Kalman Gain K 
 
Fig. 26   Kalman Filter Gain 
 
From Fig. 23 to 26, we can see that Kalman Filter works very well in spite of 
large measurement noise. Kalman gain K converges to a certain value and 
becomes stable at 0.0613 in this case.  
 
A. Process Noise Covariance Q and Measurement Noise Covariance R 

[13][14]” Weighted Q and R  
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where α > 1, Q and R are constant matrices. 
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Fig. 27  Estimated Position Trajectory 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 28  Process Noise Covariance Q 
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Fig. 29.   Measurement Noise Covariance R 
Fig 29 Measured Noise Covariance R 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 30  Kalman Gain K 
 
With the decreasing of Q and R, Kalman gain K becomes diverging and cannot 

reach a stable value. The estimated position trajectory (Fig. 27) becomes more 
and more inaccurate too. 

 
B. Correlated Process Noise and Measurement Noise 
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      A generalized derivation yields the optimal estimation algorithm with the 
same initial conditions and measurement update relations:  

 

( )
_ _1
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This can be compared to the case of no correlation between wk and vk. The 
decrease in steady state values from  
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is due to the exploitation of the correlation between the dynamic noise and the 
noise that corrupts the observable outputs: the zk realizations reveal more about 
the noise process wk. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 31.  Estimated Position  
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Fig. 32.  Kalman Gain K 
 
 
 
4.6   Fuzzy Kalman Filter 

 
Now we introduce an ” optimal„  state estimator, based on fuzzy set theory, which 
is capable of dealing with systems with random disturbances and ” uncertainty„ . 
We will refer to this as a fuzzy Kalman filter, and it is a fuzzy system model of 
the process in the estimator. This filter is similar to that of the Kalman filter when 
a linear system with Gaussian noise is considered.  
Let the inputs be PPe ,e , e , e kk

kk

g g , and the output is the estimated position at time step 
k+1, where ek

 is the error between measured position value and true position 

value, ek

g is the change in ek
, 

Pe
k
is the difference between P  and  Pk k

− , and Pe k

g
is the 

change in 
Pe

k
. Here we use a MISO (Multiple Inputs Single Output) system to 

accomplish the task. The rules being used are such as  
Rule 1: IF ek

 is negative large, ek

g  is zero, 
Pe

k
 is negative large, and Pe k

g
 is 

negative large, THEN estimated position at step k+1 is positive large. 
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Rule 2: IF ek
 is zero, ek

g  is zero, 
Pe

k
 is negative large, and Pe k

g
 is negative large, 

THEN estimated position at step k+1 is positive large. 
Rule 3: IF ek

 is positive large, ek

g  is zero, 
Pe

k
 is zero, and Pe k

g
 is zero, THEN 

estimated position at step k+1 is negative large. 
Rule 4: IF ek

 is zero, ek

g  is positive small, 
Pe

k
 is negative small, and Pe k

g
 is 

negative small, THEN estimated position at step k+1 is negative small. 
The results are plotted as in Fig. 33 to Fig. 36. Compared with Fig. 24 which 
is obtained by using Kalman filter, it is more accurate. 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
Fig. 33   Estimated Position  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 34 ek
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Fig. 35 

Pe
k
and Pe k
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A. Process Noise Covariance Q and Measurement Noise Covariance R”

Weighted Q and R (as in Kalman filter) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 36 Estimated Trajectory 
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Fig. 37  ek

and ek

g  
 
 
 
 
 
 
 
 
 
 
Fig. 38  
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B. Correlated Process Noise and Measurement Noise (as in Kalman filter) 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 39  Estimated Position  

0 10 20 30 40 50 60 70 80 90 100
-15

-10

-5

0

5

10

15

E
st

im
at

ed
 P

os
iti

on
 T

ra
je

ct
ot

y

Time (sec)

0 10 20 30 40 50 60 70 80 90 100
-40

-20

0

20

40

Time (sec)

Error between Measured Position and True Position

0 10 20 30 40 50 60 70 80 90 100
-6

-4

-2

0

2

4

Time (sec)

Change in above error

0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0
x 10

-4 Error between P and Estimated P

Time (sec)

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4

6
x 10-6 Change in above error

Time (sec)



 42 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 40  ek

 and ek

g   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 41 
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4.7  Summary 

 
The method that is the most widely used for sensor fusion in engineering 

applications is the Kalman filter.  This filter is often used to combine all 
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measurement data (e.g., for fusing data from different sensors) to get an optimal 
estimate in a statistical sense. If the system can be described with a linear model 
and both the system error and the sensor error can be modeled as Gaussian noise, 
then the Kalman filter will provide a unique statistically optimal estimate for the 
fused data. This means that under certain conditions the Kalman filter is able to 
find the best estimates based on the ” correctness„  of each individual 
measurement. On the basis of simulation performed in this chapter for fuzzy 
Kalman filter and regular Kalman filter under different conditions and parameters, 
it was shown that for linear systems and triangular shaped membership functions, 
the fuzzy Kalman filter works similarly as Kalman filter but produces better 
results than the Kalman filter. In Fig. 42 and 43, the general comparison of fuzzy 
Kalman Filter and regular Kalman Filter was presented. It can be proved that the 
convergence of Kalman Filter ŝ estimate to the true value is guaranteed only when 
the system is stochastically controlled and observed.  
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